以下是为您整理的有关提示词批量处理的相关内容:
在 Coze 上创建工作流、Bot 中,大模型组件的系统级提示词用于定义模型的角色和任务,与外层用户直接交互的提示词不同。系统级提示词侧重于模型的内部工作机制,外层提示词则更多关注根据用户指令进行编排和响应。通过精心设计这两种提示词,可增强模型对用户指令的处理能力,确保工作流顺畅高效。
在大模型组件中,批处理即迭代处理,可对集合或数组中的每个元素进行批量处理。通过依次遍历集合或数组,每个元素都能经过相同处理流程,关键在于通过有限循环实现高效数据处理。批处理中可设置循环次数和并发量,例如 Coze 的大模型组件最多支持 200 次循环,可通过调整并发量在一次循环中同时处理多个元素以提高处理效率。
在 AI 应用到工作场景中制作单词卡片时,提示词编写包括生成符合要求的单词卡内容并填入 Excel 文件中。通过给出基本示例和附加规则限制,输入多个单词可实现同时解析,虽效果可能因方法论不足而有差异,但大体格式符合要求。批量产出时需上传压缩文件并完成套版,即可获得符合要求的卡片。
在大模型节点中,设置系统级的提示词(system prompt)是一个关键步骤,这与外层用户直接交互的提示词不同。系统级提示词主要用于定义模型的角色和任务,提供一个固定的模板来指导模型的行为和输出。这种设置允许你明确地指示模型扮演的角色以及它需要完成的具体任务。例如,你可能需要模型作为一个历史顾问来回答有关过去事件的问题,或者作为一个技术专家来解决特定的技术问题。通过在系统级提示词中设定这些参数,你可以确保模型的输出与你的期望和工作流的需求保持一致。与外层提示词相比,系统级提示词更侧重于模型的内部工作机制,而外层提示词则更多地关注于如何根据用户的指令进行编排和响应。通过精心设计这两种提示词,可以增强模型对用户指令的处理能力,并确保整个工作流的顺畅和高效。在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在Coze的大模型组件中,最多可以支持200次的循环,这相当于一个200次的for循环,允许我们对200个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有200个元素,我们可以设置每次同时处理5个元素,这样只需要40次循环就可以完成整个集合的处理。
这段提示词,其实写的挺简单的。简单来说,就是最外围的核心就是我的两个目的。1.生成符合要求的单词卡的内容2.按照对应的位置把内容分别填入Excel文件中在生成过程中,我首先给个一个基本的示例,这是GPT能够完成这段任务最核心的依托。然后根据不同的生成内容限定了一点规则。同样的关于第二部分,我也是给出了一段基础的自然语言描述,然后利用附加规则的方式给出了更多的限制。这样确保能够按照我的要求来输出Excel文档给我。[heading3]二)测试结果[content]我一起输入了五个单词,可以实现同时解析。但是效果有的稍微差一些,可能主要是因为给的方法论不足,但是大体格式是符合我的要求的。关于第二部分,如下图:我们可以看到,其实他有按照我的要求把内容填进对应的空格中,但是改变了最初的一些设定。可能是因为一些兼容性的问题,但是依然不妨碍我们使用,简单的复制粘贴即可。我们把Excel下载下来,复制他填好的表格。粘贴到我们的表格中。(因为要多次使用,记得留好原Excel的备份文件。)注意这里需要上传的是压缩文件,所以我们先压缩一下。(rar格式的文件,我试了下,但是上传的时候看不见,不知道什么问题emmm)[heading3]三)批量产出[content]上传压缩文件上传成功后,如图中1所示,然后我们点击2完成套版。然后,我们就获得了符合我们要求的几张小卡片。
作者:张梦飞原文链接,大家多多关注https://mp.weixin.qq.com/s/070zb9RWq1TVlBkKt7usgw大家好,我是梦飞。今天补听了@李继刚Arthur老师在AIPO共学中的直播,本次是李继刚老师第一次的直播分享,颇为难得。看的时候频频感叹李继刚老师对提示词的理解之深刻,思路之清晰,多处的总结都让我有一种茅塞顿开,醍醐灌顶之感。顿感此等分享如不整理为文稿,让更多人看到,简直是藏之名山,却未传其人!如果干货我没让粉丝们看到,我是真没把粉丝们当家人了,强烈建议阅读!因此,我斗胆自己动手整理了全篇分享。整场直播约2小时,原分享文本约32000字。因为是直播,所以原文本表述中有非常多的口语化和一些评论交谈。为了保持全文通畅,尊重继刚老师分享和方便大家阅读,我对整个文稿内容进行了纯人工整理,尽量保留了原话,全篇没有用到任何AI处理。以此保证在做了些许调整和精简的情况下,保留原汁原味的阅读体验。