Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

从0到1学习ai

Answer

以下是从 0 到 1 学习 AI 的建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

90分钟从0开始打造你的第一个Coze应用: 证件照 2025年1月18日 副本

[heading2]总结Code AI应用开发教学Code AI应用背景:智能体开发从最初的chatbot只有对话框,到有了更多交互方式,因用户需求扣子推出了AI应用,其低代码或零代码的工作流等场景做得较好。AI CODING现状:AI CODING虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。AI应用学习过程:创建AI应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。

Others are asking
请你作为AI设计师,为我推荐好用的AI风格化工具,可以进行批量处理图片,与此同时保持高度的风格统一
以下为您推荐一些好用的可批量处理图片并保持高度风格统一的 AI 风格化工具: 1. 星流一站式 AI 设计工具: 基础风格模型 Checkpoint:包含多个分类不同风格的大模型,适用于写实摄影、插画、动漫、3D 立体等,能生成丰富多彩的图片效果。其中星流通用大模型相比常见大模型具有更强的语义理解、更高的艺术审美和表现力。基础模型 F.1、基础模型 XL、基础模型 1.5 在效果和生成速度上有所不同,效果上基础模型 F.1>基础模型 XL>基础模型 1.5,生成速度上基础模型 1.5>基础模型 XL>基础模型 F.1。入门模式下只能使用星流通用大模型。 增强模型:作为基础模型的补充,用于生成特定风格、角色。您可以收藏模型、查看例图,还可以通过滑动鼠标到图像并点击风格,将当前风格当作增强模型使用。 2. Magnific AI:具有新功能——风格转换,可以将任意照片转换成各种风格的图像,同时保持人物对象的一致性。大 BOSS 的演示和教程下周开放访问。 3. Cartwheel:文本转 3D 动画工具,输入文字提示即可生成适用于多种用途的 3D 动画角色,支持指定动作,可以导出到任何 3D 程序中编辑。目前处于早期阶段,还在测试阶段,需排队。
2025-03-27
有没有ai润色的案例
以下是一些 AI 润色的案例: 1. 在一篇博客的数字化转型中,文章从 1000 字扩展到 5000 字。过程中与 AI 合作生成文章大纲与创意扩展,最后进行标题选择和整体评估。最终选定“AI 与人类协作:重塑内容创作的未来”的标题,AI 还指出语法错误和表达不一致的地方,作者据此修改。此过程耗时约 4 小时,比独立完成节省至少 60%的时间,且文章深度和广度显著提升。 2. 常见的文章润色 AI 工具有:Wordvice AI,集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务;ChatGPT,由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助;Quillbot,人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料;HyperWrite,基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划;Wordtune,AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达;Smodin,提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 3. 从逻辑、内容、语言三维度打造 Claude 润色方案,需求分析包括润色的三个层次,即语言表达层次(遣词用字准确性和优美性、句式结构流畅性、语气语调统一性)、逻辑结构层面(段落衔接过渡自然、论述层次分明重点突出、整体结构完整首尾呼应)、内容深度层面(论点论据充实完备、事实描述准确具体、观点阐述深入透彻),并按照需求分析、分步实现、提示词编写测试、总结的顺序进行。输入为已写好的内容,输出为 Claude 辅助润色完的内容。
2025-03-27
AI训练范式革命
以下是关于 AI 训练范式革命的相关信息: Prime Intellect: Intellect1 是业界首个采用去中心化训练方式的大规模语言模型,模型规模达到 10B 参数量级,采用跨地域分布式训练架构,横跨 3 大洲 5 国,整合 112 台 H100 GPU 算力,训练过程实现 83%的算力利用率,验证了去中心化训练在大模型构建中的技术可行性。该公司为美国初创公司 Prime Intellect,专注去中心化 AI 技术的研发与创新。产品入口完全开源,开放基础模型、检查点、微调模型、训练数据及 PRIME 训练框架等全套技术资源。 GPT4.5: 通过扩展无监督学习和思维链推理两种范式来提升 AI 能力。扩展思维链推理可让模型在回应前思考,从而处理复杂的 STEM 或逻辑问题;扩展无监督学习能提高世界模型的准确性、降低幻觉率并改善联想思维。GPT4.5 是在扩展无监督学习范式上的新进展。 开发了新的可扩展对齐技术,能训练更大更强的模型,并使用来自较小模型的数据,提高了 GPT4.5 的可操纵性、对细微差别的理解和自然对话能力。 GPT4.5 在多样化的数据集上进行了预训练和后训练,包括公开数据、来自数据合作的专有数据和内部开发的自定义数据集。数据处理流程包括严格过滤以保证数据质量和降低潜在风险。 内部测试人员称 GPT4.5 热情、直观和自然,在处理情感类查询时表现出色,在创意写作和设计方面有较强能力。 医疗 AI 领域: 图像理解在医疗领域率先实现商业化,科技巨头深耕医疗 AI 研发,学术界取得突破性进展,行业权威对医疗 AI 持积极态度。 多模态识别能力提升使 AI 在专业领域的理解和分析应用成为可能,医疗 AI 的成功得益于其深度对接专业场景,以解决实际临床需求为导向的发展路径。 规模化训练是通过扩大模型参数、数据规模和算力投入,在量变中实现质变的训练范式。视频生成相比图像生成难度提升百倍,视频生成技术发展出自回归与扩散两大路线,Sora 引领 DiT 架构成为主流方向,规模化训练是实现高质量视频生成的关键。
2025-03-27
奇域Ai咒语
以下是关于 AI 咒语的相关知识: 在 AIGC 中,“咒语”指的是 prompts,即关键词。 以下是一些与 AI 咒语相关的资源和示例: 海螺 AI 的时空之门咒语示例:镜头缓缓越过一个身穿战国时期盔甲的少年的肩膀,他手持长剑,站在战场的边缘。当镜头越过他的肩膀时,战场中央的天空突然发生裂开,然后露出一道巨大的时空裂缝。从裂缝中可以看到一个未来科幻世界:巨大的机械城市、未来战车和流动的城市景观。未来科技的机器人和飞行器不断从裂缝中涌出,战场瞬间陷入混乱。镜头缓缓越过一个身着维多利亚时期绅士服装的小男孩的肩膀,他手持拐杖站在一片街道上。当镜头越过他的肩膀时,街道中央的天空突然裂开,露出一道巨大的时空裂缝。从裂缝中可以看到一个未来科幻世界:未来高科技建筑、闪烁的激光墙和自动驾驶汽车。未来科技设备和无人机不断从裂缝中涌出,街道瞬间陷入一片混乱。 提示词相关的资源网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-03-27
我是一名大一学生,我想创业,我有创业点子,我需要自己利用ai来开发app。我刚刚加入这个社群,我没有编程基础,也不怎么擅长用ai,并且我得不到ai创投圈以及科技发展的最新消息,不会用飞书,不会用这个社群。以利用ai开发app为最终目的的导向,我应该怎么做
以下是为您提供的建议,以帮助您利用 AI 开发 APP 并实现创业目标: 1. 了解有趣的产品案例:例如对话情绪感知助手,它能帮助用户理解社交场景并提供合适话术;剧本杀创作平台,具备剧本润色和 AI 测本功能;插件图标生成器,解决了开发插件时的图标制作难题。 2. 学习优秀作品:像插图神器、拍个明白、3 秒变现想法落地等,部分有公开网页和开源代码,可供试用和借鉴。 3. 掌握工具使用方法:例如 tree 等 AI 编程工具,即使不会编程也能通过自然语言交互生成代码和解决问题。 4. 借鉴学生经验:湖南大学齐国皓分享了用 tree 工具带领非技术专业同学做案例的经验。 5. 关注产品规划和愿景:如 CubeOne 会尽快上线手动编辑功能,其 AI 能力也将在月底有大更新,团队愿景是为人们带来世界上最好的做演讲的体验。 6. 参考创业实践:有大四学生在湖南大学利用 AI 编程工具进行 AI 加金融交易方面的创业。 7. 积极参与案例分享与交流:在飞书群等平台分享和获取更多案例链接。 总之,您需要多学习成功案例和工具使用方法,借鉴他人经验,明确产品规划和愿景,积极参与交流,逐步实现利用 AI 开发 APP 的创业目标。
2025-03-27
UI相关的ai工具有哪些
以下是一些与 UI 相关的 AI 工具: 1. UIzard:利用 AI 技术生成用户界面,可根据提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作。 4. UIGENT1:基于 Qwen2.5Coder7B 微调,能根据提示生成标准 HTML/CSS 代码,擅长基础前端页面。 5. Galileo AI:可根据文字或图片生成完整 UI 设计,并导出 HTML 和 Figma 文件。 6. 即时设计:https://js.design/ ,可在线使用的专业 UI 设计工具,注重云端文件管理和团队协作。 7. V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 8. Wix:https://wix.com/ ,用户友好的 AI 工具,无需编码知识即可创建和自定义网站。 9. Dora:https://www.dora.run/ ,通过一个 prompt,借助 AI 3D 动画生成强大网站。 请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-03-27
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-27
作为AI小白,如何开始学习AI?有哪些资源和方式推荐?
对于 AI 小白,以下是开始学习 AI 的建议和资源推荐: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,关于 AI 知识库使用及 AIPO 活动的介绍:讨论了 AI 知识库的使用情况、AIPO 活动的发起背景、内容安排及相关资源等。AIPO 线下活动及 AI 相关探讨:讨论了 AIPO 线下活动的规则和玩法,以及 AI 在科技发展中的重要地位和相关研究方向。way to AGI 社区活动与知识库介绍:讨论了 way to AGI 社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。 学习路径方面:有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-27
我想系统性的学习AI,请帮我列一个课表
以下是为您整理的一些系统性学习 AI 的课程表: 清华创协独立开发|AI 应用开发实训营 课程周期:2025 年 3 月 22 日 5 月 3 日 上课时间:每周六晚 19:00 21:00,共 7 次课程 授课地点:清华大学校内(具体地点后续通知) 第一期「AI 实训营」手把手学 AI |时间|主题|课程内容| |||| |01/07 20:00<br><br>必须了解的企业级 AI 应用开发知识点|阿里云百炼大模型平台全解析<br>企业级服务场景对号入座<br>百闻不如体验,实操方有感知| |01/08 20:00<br><br>更好用的文本知识库应用跟学,快速上手阿里云百炼|生态能力解析:手把手案例带做<br>服务场景透视:企业级案例应用<br>AI 机器人搭建:企业知识问答场景全覆盖| |01/09 20:00<br><br>更热门的多模态交互案例带练,实操掌握 AI 应用开发|阿里云百炼大模型多模态能力解析<br>商家运营场景&企业级解决方案分享<br>实践课堂:拍立得场景构建| 野菩萨的 AI 课程 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 希望以上课程表对您有所帮助。
2025-03-27
如何快速学习并写好提示词
以下是关于如何快速学习并写好提示词的相关内容: 一、提示词的基本概念 1. 提示词用于描绘您想生成的画面。 2. 输入语言方面,不同模型有所差异。例如,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 3. 启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 二、写好提示词的方法 1. 提示词内容准确 包含人物主体、风格、场景特点、环境光照、画面构图、画质等要素,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词 点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能 可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 善用辅助功能 翻译功能:一键将提示词翻译成英文。 删除所有提示词:清空提示词框。 会员加速:加速图像生图速度,提升效率。 三、学习提示词运用的建议 1. 理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出的质量。 2. 学习提示词的构建技巧 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例 研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。可在领域社区、Github 等资源中找到大量案例。 4. 实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 四、系统学习 Stable Diffusion 提示词的步骤 1. 学习基本概念 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。
2025-03-27
AI免费学习网站
以下为您推荐一些 AI 免费学习网站: 1. 麻省理工学院(MIT)推出的 Day of AI 课程:这门课程包含在 MIT 的 RAISE 项目中,面向 8 18 岁孩子,席卷全球,来自 110 多个国家的 50 万名学生都在使用,且完全免费。不过其课程资源主要面向家长、老师群体,大孩子可自学,小孩子可能需要家长辅助。 网站:RAISE 项目官网 相关免费 AI 工具: RAISE Playground:一个交互式编程平台,任何人都可以学习模型、机器人和 AI 引擎完成有趣的 AI 项目。网址:https://playground.raise.mit.edu/ App Inventor:让孩子可以制作属于自己的手机 APP。网址:https://appinventor.mit.edu/ Dancing with AI:针对中学生的交互式 AI 机器人项目,只要会用 Scratch 编程就能训练机器人。网址:https://dancingwithai.media.mit.edu/curriculum Picaboo:让孩子像李飞飞一样训练自己的图像分类模型。网址:https://appinventor.mit.edu/explore/resources/ai/picaboo 2. 对于新手学习 AI,您可以: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-03-26
有关学习的prompt
以下是关于学习提示词运用的全面指导: 一、理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出的质量,能让模型更准确地理解并完成所需任务。 二、学习提示词的构建技巧 1. 明确任务目标,用简洁准确的语言描述。 2. 给予足够的背景信息和示例,帮助模型理解语境。 3. 使用清晰的指令,如“解释”“总结”“创作”等。 4. 对特殊要求应给予明确指示,如输出格式、字数限制等。 三、参考优秀案例 研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中找到大量案例。 四、实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 五、活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 六、跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 七、相关网站 1. 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-26