Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是一名ai小白,我想学习如何从一名小白利用ai创造财富

Answer

以下是为您提供的从 AI 小白利用 AI 创造财富的学习路径:

  1. 搭建 AI 微信聊天机器人:
    • 选用技术组件:极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker。
    • 按照详细的配置步骤进行操作,包括购买服务器、配置宝塔面板,部署 Docker 和 COW 组件,绑定微信号。
    • 了解费用问题,如极简未来平台和腾讯云服务器的费用,以及通过积分和优惠降低成本的方法。
    • 掌握运维问题的解答,包括如何管理和维护服务器和服务,以及遇到问题时的解决方案。
  2. 学习 AI 技术原理与建立框架:
    • 理解什么是 AI 大模型及其原理。
    • 熟悉相关技术名词,如 AI、机器学习(包括监督学习、无监督学习、强化学习)、深度学习、生成式 AI、LLM 等。
    • 了解技术里程碑,如 2017 年 6 月谷歌团队发表的提出 Transformer 模型的论文。

如果在实战过程中有任何不懂的地方,可以随时私信相关作者。另外,如果您有兴趣学习相关的 AI Agent 知识,可以加入免费的 AI Agent 共学群,通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。通过不断学习和探索,相信您能在 AI 的世界中创造属于自己的价值。

Content generated by AI large model, please carefully verify (powered by aily)

References

安仔:不用黑魔法,小白也能做一个对接 GPT 大模型的微信聊天机器人

通过这篇文章,我们展示了如何使用极简未来平台、腾讯云轻量应用服务器、宝塔面板和Docker来搭建一个AI微信聊天机器人。即使是技术小白,也能通过详细的教程和简单的操作,低成本地实现自己的AI应用。本文的主要要点包括:1.技术组件的选用:极简未来平台、腾讯云轻量应用服务器、宝塔面板和Docker。2.详细的配置步骤:从购买服务器、配置宝塔面板,到部署Docker和COW组件,再到绑定微信号。3.费用问题的解答:极简未来平台的费用和腾讯云服务器的费用,以及如何通过积分和优惠降低成本。4.运维问题的解答:如何简单高效地管理和维护服务器和服务,以及遇到问题时的解决方案。如果在实战过程中有任何不懂的地方,可以随时私信我。我会尽力帮助解答。需要注意的是,本文展示的是最基础和简单的玩法,帮助大家快速入门。实际上,基于这些技术组件,我们还可以配置更多高级功能,比如各种AI机器人的大模型、知识库、各种插件的丰富配置等,这些进阶配置我将在后续的文章中详细展开分享。通过不断学习和探索,相信大家都能在AI的世界中找到属于自己的乐趣和成就感,创造属于自己的价值。对了,如果大家有兴趣学习相关的AI Agent知识,可以加入我免费的AI Agent共学群,这个群组会基于WaytoAGI社区等其他高质量信息源,来分享时下AI Agent相关的各种玩法和经验分享,以及各种最新的AI前沿资讯。搜索我的微信号Andywuwu07或扫描以下二维码加我微信,备注AI共学,以便我会拉你进去共学群。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

Others are asking
如何用AI写月报
以下是关于如何用 AI 写月报的指导: 1. 信息收集:利用 AI 搜索与权威网站相结合,获取关键数据。AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对月报需求将内容进行拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写月报初稿,可指定风格并校验数据与结论的准确性。 需要注意的是,AI 仅作辅助,最终内容需人工主导校验,避免出现误导性结论。
2025-03-26
零基础学Ai
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一些个人的 AI 学习经历供您参考: 二师兄来自上海,80 后,计算机零基础。2024 年 2 月在七彩虹的售后群接触到 AI 绘画,下载了 SD 秋叶安装包和教学视频,迈出 AI 学习的第一步。3 月啃完 SD 的所有教程并开始炼丹。4 月与小伙伴探讨 AI 变现途径,尝试相关项目。5 月因工作变动,在无硬件支持的情况下继续学习,加入 Prompt battle 社群,开始 Midjourney 的学习。 同时,“AI 编程共学”活动也为零基础学习者提供了一些资源和分享: 10 月 28 日 20:00 开始(回放链接: ),分享通往 AGI 之路增量小游戏、转生之我是野菩萨,并进行 0 基础做小游戏分享。 10 月 29 日 20:00 开始(。 10 月 30 日 20:00 开始(回放链接),分享,包括 Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用。 10 月 31 日 20:00 开始(回放链接),进行 0 基础做小游戏分享:猪猪🐷撞南墙。
2025-03-26
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-26
AI infra是什么意思?
AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。 例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。 在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。
2025-03-26
AI证书
以下是关于 AI 证书的相关信息: 新手学习 AI 并获取证书的途径: 首先,了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,包括主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 根据兴趣选择特定模块深入学习,掌握提示词技巧。 理论学习后进行实践,尝试使用各种产品做出作品,分享实践成果。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。 相关学习资源: 云端问道:https://developer.aliyun.com/topic/techworkshop?spm=a2c6h.29649919.J_3425856640.1.45d87102rfvft7 云起实践平台:https://developer.aliyun.com/adc/?spm=a2c6h.28938832.0.0.5ca5448a0xO1Q9 人工智能认证证书: (免费) 视觉开放平台:https://vision.aliyun.com/ MQ 老师是知乎的 AI 讲师,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,并在教育行业有丰富经验和实践探索。
2025-03-26
给我推荐一个写论文的ai
以下是为您推荐的用于写论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您是医学课题需要修改意见,以下工具可供选择: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:可提取文档结构化数据,生成文章概要,包含多个分析板块。 3. ChatGPT:强大的自然语言处理模型,能提供修改意见。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-26
有哪些AI工具可以获取上市公司年报数据。我是小白,推荐简单好学的工具。
以下是一些可能获取上市公司年报数据的 AI 工具及相关信息: AI 智库:提供了上市公司的相关排名和产品信息,如百度、美图公司、阿里巴巴、昆仑万维等公司的情况。 余一的相关文档:包括《从 2023 年报,看中国上市公司怎么使用生成式 AI》等,可通过相关链接获取详细内容。 对于小白来说,您可以先尝试从这些资源中获取所需的上市公司年报数据。
2025-03-25
我是一名ai小白,我现在系统学习ai的一切创作,并利用于工作中,请问怎么从头开始学习
对于 AI 小白想要系统学习 AI 并应用于工作,您可以按照以下步骤从头开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,其中有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,了解他人的学习模式和经验。比如作者采用输入→模仿→自发创造的模式,并且学习资源都是免费开源的。 总之,学习 AI 需要耐心和持续的努力,祝您学习顺利!
2025-03-24
零基础小白如何入手AI
对于零基础的小白,入手 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白。作者的学习模式是输入→模仿→自发创造,学习内容可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。该日记中的学习资源免费开源。 对于编程工具,Cursor 是一个零代码基础的小白用户也能上手的 AI 编程工具,基于 Visual Studio Code 构建,集成了强大的 AI 功能。其具有 AI 辅助编程、简单易用的界面、支持多种语言、强大工具等特点和优势。下载可通过打开浏览器,访问,点击“Download”按钮,选择适合电脑的版本,下载完成后,双击安装文件,按照提示完成安装。新建项目时,在界面中选择 open project,新建一个纯英文名称的文件夹后选择打开。其界面包括代码区、文件区、状态栏和 AI 互动区等主要区域。在正式开始项目前,可先设置一下 Cursor Rules。
2025-03-24
我是新手小白,先学习人工智能开发,从而找工作,如何开始
对于新手小白想要学习人工智能开发从而找工作,可以按照以下步骤开始: 1. 了解自身硬件情况和财力,选择合适的开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的,可以使用在线工具,包括在线出图和云电脑,根据实际情况选择,前者功能可能受限,后者需手动部署。 配台电脑:不建议一开始就配主机,玩几个月后仍对 AI 有兴趣再考虑,主机硬盘要大,显卡在预算内买最好,其他随意。 2. 学习相关课程: 先验经验:需要熟练使用文生图、图生图,有一定逻辑思考和推理能力,适合炼丹新人、小白。 课程安排:课程约 70 80%是理论和方法论内容,大部分练习在课外沟通、练习,少部分必要内容在课上演示。 学习路径:必学、必看内容是基础课,解决环境和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具安装教程;正式内容分为数据集预处理、模型训练以及模型调试及优化三个部分。 3. 进行项目实践,例如: 可以参考“齐码蓝:你(或孩子)还需要学编程吗?AI 编程 Master GPTs”中的项目,先进行需求分析与项目规划,包括功能需求(如每个离谱生物的页面展示图片、头像、文字介绍,支持文字和语音对话,展示相关离谱事件)和非功能需求(页面加载速度快、用户界面友好、支持响应式设计),以及用户故事(如访客浏览不同离谱生物档案、了解背景故事和相关事件、进行文字或语音交流)。 然后进行架构设计与模块化,采用前后端分离架构,前端负责展示界面和用户交互,后端负责处理业务逻辑和数据存取,通过 REST API 实现前后端交互,模块化分为前端模块(生物档案组件、事件展示组件、对话组件)和后端模块(生物档案 API、事件 API、语音处理 API)。 4. 了解法律法规:阅读《促进创新的人工智能监管方法》,了解 AI 在社会和经济中的应用和影响,以及相关的监管环境。
2025-03-24
我是新手小白,先学习人工智能,如何开始
对于新手学习人工智能,您可以按照以下步骤开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-24
小白,学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,还有一些个人的学习经验可供参考: 像元子语通过参与《谁是人类》活动,意识到学习 AI 并非遥不可及,从 prompt 入手,虽在将 prompt 规范、抽象用以让 AI 拟人方面有困难,但参与和学习的过程很有收获。 雪梅 May 以输入→模仿→自发创造的模式学习 AI,其学习日记适合纯小白参考,学习内容可根据自身在 waytoAGI 社区的兴趣选择最新的,且学习资源免费开源。学习时间灵活,不必有压力,保持好的学习状态即可。
2025-03-24
我是一名平面设计师,我应该如何利用ai工具
以下是一些平面设计师可以利用的 AI 工具及相关介绍: 审核规划平面图的 AI 工具: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,可根据输入的房间面积需求和土地约束自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,能在住宅设计早期引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成管理。 辅助画 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件的生成设计工具:如 Autodesk 系列、SolidWorks 等,可根据设计目标和约束条件自动产生多种方案。 AI 编程整合的应用: 1. 设计工作流自动化:如创建 Photoshop 插件,自动批量处理图片的裁剪、亮度调整、添加水印等操作。 2. 知识管理自动化:开发 Obsidian 插件,自动在笔记间建立链接、整理知识网络和推荐相关资料。 需要注意的是,每个工具都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的工具。同时,这些工具通常需要一定的相关知识和技能才能有效使用。
2025-03-24
作为一名高中语文教师,该学习哪些知识,能够更好地在工作中运用AI
作为一名高中语文教师,为了在工作中更好地运用 AI,您可以学习以下知识: 1. 提示词设计:掌握有效的提示词设计公式,例如 RTFC,以便更精准地向 AI 提出需求。 2. 利用 AI 工具:如用 Metaso 建立案例库,随时询问随时学习。 3. 了解 AI 在教学中的应用技巧:包括用 AI 配字幕、翻译、思维导图等快速总结和学习讲座内容。 4. 掌握 AI 赋能教学设计:以高中语文课程标准为导向,结合学生主体和核心素养,设计教学流程。例如在《再别康桥》的教学设计中,通过创设情境、品鉴特色、融思迁移等环节,融入地理、美术、音乐等多学科知识,借助人工智能协助修改诗歌创作。 5. 学习智能作文批改指导:利用相关工具提升作文批改的效率和质量。 6. 参加相关工作坊:如 AI 进阶工作坊,了解最新 AI 技术与实践案例分享,掌握全球 AI 技术在教育界的新发展和新应用。 同时,建议您参加适合有初步 AI 使用经验、期待了解最新技术进展、渴望分享交流的老师的课程和活动,不断提升自己在 AI 应用方面的能力。
2025-03-24
我是一名ai小白,我想学习这门课程,请你帮我规划一下
以下是为您规划的 AI 学习路径: 预习周课程: AI 绘画电脑配置要求 高效 AIGC 创意者的数字人工具包 SD 插件安装方法 画静为动的 AIGC 视频制作讲解 基础操作课: AI 绘画通识课 AI 摄影虚拟的真实 AI 电影 穿越的大门 核心范式课程: 词汇的纸牌屋 核心范式应用 控制随机性 SD WebUi 体系课程: SD 基础部署 SD 文生图 图生图 局部重绘 ChatGPT 体系课程: ChatGPT 基础 核心 文风、格式、思维模型 ComfyUI 与 AI 动画课程: 部署和基本概念 基础工作流搭建 动画工作流搭建 应对 SORA 的视听语言课程: 通识 欢迎参加电影的葬礼 影像赏析 基础戏剧影视文学 学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定的 AI 模块(如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 开始方式选择: 1. 本地部署: 如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台: 对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 3. 配台电脑: 非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 先验经验: 需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。 课程安排: 课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 您还可以通过参与 video battle 争取免费课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 您可以扫码添加菩萨老师助理,了解更多课程信息。让我们一起在“通往 AGI 之路”社区学习成长,探索 AI 的无限可能!
2025-03-23
我是一名硬件工程师 如何让ai快速理解我的原理图并优化
以下是关于让 AI 理解原理图并优化的相关知识: 1. 在 AI 硬件发展方面,存算一体的方式是未来的趋势。对比人脑,其能耗低,使用存算一体的芯片有望诞生全新算法,运行几百亿参数的大模型的最佳架构也是存算一体,因其避免了数据搬运。 2. 大模型在通用知识方面较强,但对专业领域知识了解不足。将大模型与私域知识结合有 5 种方法:重新训练(拿私域数据重新训练大模型)、微调(拿私有数据 finetuning 大模型)、RAG(将知识库里的知识搜索送进大模型)、关键词工程(写好提示词)、加长 Context(当 Context 能无限长时,可将知识和记忆 prefill 到 Context 里)。学术界中,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。 3. 在 Trae 优化代码方面,当请求“帮我把当前的代码给优化一下”时,请求先到 Trae 自己的服务器,服务器再请求对应模型返回数据。不会发送本地代码文件,只发送“文件名”加“问题”,且在最开始 Trae 打开项目进行索引构建时,已在云端构建好项目文件。 对于您作为硬件工程师让 AI 快速理解原理图并优化的需求,目前可能需要进一步探索如何将原理图的特征和相关信息转化为适合 AI 处理和理解的形式,或许可以借鉴上述将专业知识与大模型结合的方法,以及利用高效的数据库和模型架构来提高处理效率。
2025-03-23
我是一名 C 端用户产品经理,想转行做 AI 产品经理,应该从哪里入手
如果您作为一名 C 端用户产品经理想转行做 AI 产品经理,可以从以下几个方面入手: 1. 学习 Prompt 提示词:了解 Prompt 提示词的概念和应用,参考相关文档如 https://www.promptingguide.ai/zh ,掌握通过 Prompt 提示词解决产品经理日常工作场景的方法,例如行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器等场景。 2. 了解行业动态:关注 AI 行业的最新发展和趋势,通过混入各种相关群,与不同的人交流业务和技术,获取最新信息。 3. 弥补知识差距:由于 AI 技术发展迅速,可能存在技术与业务之间的知识断档。需要努力弥补自己在技术和业务方面的不足,熟悉相关技术知识,同时深入理解业务需求。 4. 积累项目经验:可以尝试参与一些 AI 相关的项目,哪怕是免费为相关人员提供服务,以积累实际经验。 5. 分析成功案例:研究已有的 AI 产品,了解其成功的因素和实现方式。
2025-03-22