以下是一些可以免费系统学习机器学习的课程资源和学习路径:
学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能。以下是一些建议的学习路径和资源:1.掌握深度学习和自然语言处理基础-机器学习、深度学习、神经网络等基础理论-自然语言处理基础,如词向量、序列模型、注意力机制等-相关课程:吴恩达的深度学习课程、斯坦福cs224n等2.理解Transformer和BERT等模型原理-Transformer模型架构及自注意力机制原理-BERT的预训练和微调方法-掌握相关论文,如Attention is All You Need、BERT论文等3.学习LLM模型训练和微调-大规模文本语料预处理-LLM预训练框架,如PyTorch、TensorFlow等-微调LLM模型进行特定任务迁移-相关资源:HuggingFace课程、论文及开源仓库等4.LLM模型优化和部署-模型压缩、蒸馏、并行等优化技术-模型评估和可解释性-模型服务化、在线推理、多语言支持等-相关资源:ONNX、TVM、BentoML等开源工具5.LLM工程实践和案例学习-结合行业场景,进行个性化的LLM训练-分析和优化具体LLM工程案例-研究LLM新模型、新方法的最新进展6.持续跟踪前沿发展动态-关注顶会最新论文、技术博客等资源
神经网络是机器学习文献中的一类模型。例如,如果你参加了Coursera的机器学习课程,很可能会学到神经网络。神经网络是一套特定的算法,它彻底改变了机器学习领域。他们受到生物神经网络的启发,目前深度神经网络已经被证实效果很好。神经网络本身是一般的函数逼近,这就是为什么它们几乎可以应用于任何从输入到输出空间复杂映射的机器学习问题。以下是说服你学习神经计算的三个理由:了解大脑是如何工作的:它非常大且很复杂,一旦破坏就会脑死亡,所以我们需要使用计算机模拟。了解受神经元及其适应性连接启发的并行计算风格:这种风格与序列计算截然不同。使用受大脑启发的新颖学习算法来解决实际问题:即使不是大脑的实际工作方式,学习算法也非常有用。在完成吴恩达的Coursera机器学习课程后,我开始对神经网络和深度学习产生兴趣,因此寻找最好的网上资源来了解这个主题,并找到了Geoffrey Hinton的机器学习神经网络课程。如果你正在做深度学习的工程或想要踏入深度学习/机器学习的领域,你应该参加这个课程。Geoffrey Hinton毫无疑问是深度学习领域的教父,在课程中给出了非凡的见解。在这篇博客文章中,我想分享我认为任何机器学习研究人员都应该熟悉的八个神经网络架构,以促进他们的工作。一般来说,这些架构可分为三类:1.前馈神经网络这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为「深度」神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。2.循环网络循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
1.如果和我一样一点基础也没有,并且概率论和线性代数的知识差不多都忘完了,那么可以去看一下相关课程学习一下,如果不关注公式啥的,这一步可以先忽略,大约周末一天时间就可以搞定;2.然后如果对机器学习也一点基础都没有的话,可以先看吴恩达的课程,有个大致的理解,然后去看李宏毅的课程作为补充,如果单纯的想入门学习强化学习,那么只需要看前几节讲完神经网络那里就差不多了,这个视频课程估计要看25小时左右;3.学完之后可以跟着《动手学深度学习https://hrl.boyuai.com/》一起动手学习一下我们上面学到的概念,写写代码,如果只是入门的话看前五章就好了,本篇文章的很多资料也是整理自这本书,大约10小时左右;4.接下来可以看看B站王树森的深度学习的课程,可以先看前几节学习一下强化学习的基础知识点,大约5小时左右;5.到这个阶段估计还是懵的,需要去上手做点项目,那么可以看《动手学强化学习》这本书,已经开源了https://hrl.boyuai.com/,只看到DQN的部分,大约十几小时。