Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是Diffusion Model

Answer

在 AI 图像生成中,“Diffusion Model”(扩散模型)是一类生成模型。其工作原理包括以下几个方面:

  1. 正向扩散过程:向图像逐渐添加高斯噪声,直至图像完全无法识别,此过程可形式化为顺序扩散马尔可夫链。
  2. 潜空间表示:将图像压缩到低维的潜在空间中,以减少计算量并提高生成速度。
  3. 学习逆向过程:训练神经网络来预测每一步中噪声的分布,并逐步去除噪声以恢复清晰图像。
  4. 文本到图像的生成:结合文本编码器和图像解码器,依据文本描述生成相应图像。

扩散模型的关键优势在于能够生成高质量的图像,且相比其他生成模型(如 GANs)在计算效率和稳定性方面更具优势。例如 Stable Diffusion 等模型就是基于扩散模型的文本到图像生成工具,可根据文本提示生成逼真的图像。

扩散模型的逆向过程,即从噪声中恢复图像的过程,可类比为雕刻,AI 逐步去除不必要的部分,最终得到清晰的图像。这个过程可以逐步进行,也可以一次性完成,取决于模型的具体实现和采样算法。

总的来说,扩散模型为 AI 图像生成提供了强大的技术手段,能在多种场景下生成高质量的图像。例如 Midjourney 就是一个由 Latent Diffusion Model(LDM)驱动的 AI 图像生成工具,它通过文本提示和参数输入,利用基于大量图像数据训练的机器学习算法生成独特的图像。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 图像中什么是difussion?

在AI图像生成中,"diffusion"(扩散)通常指的是一类生成模型,称为扩散模型(Diffusion Models)。这类模型通过逐步引入噪声到数据中,并训练网络学习逆向过程来生成数据。扩散模型在图像生成领域中应用广泛,特别是在文本到图像的生成任务中表现出色。扩散模型的工作原理可以概括为以下几个步骤:1.正向扩散过程:向图像逐渐添加高斯噪声,直到图像完全无法识别,这个过程可以被形式化为顺序扩散马尔可夫链。2.潜空间表示:将图像压缩到低维的潜在空间(Latent Space)中,以减少计算量和提高生成速度。3.学习逆向过程:训练一个神经网络来预测每一步中噪声的分布,并逐步去除噪声,从而恢复出清晰的图像。4.文本到图像的生成:结合文本编码器和图像解码器,根据文本描述生成相应的图像。扩散模型的关键优势在于其生成高质量的图像的能力,以及相比其他生成模型(如GANs)在计算效率和稳定性上的优势。Stable Diffusion等模型就是基于扩散模型的文本到图像生成工具,它们能够根据文本提示生成逼真的图像。扩散模型的逆向过程,即从噪声中恢复图像的过程,可以类比为雕刻,AI逐步去除不必要的部分,最终得到清晰的图像。这个过程可以逐步进行,也可以一次性完成,取决于模型的具体实现和采样算法。总的来说,扩散模型为AI图像生成提供了一种强大的技术手段,能够在多种场景下生成高质量的图像。内容由AI大模型生成,请仔细甄别

🎯训练Midjourney的prompt(可举一反三)

流程:可以复制每一步,按照下面步骤跟gpt聊下去原理:把mj的官网的说明书喂给gpt,让它根据说明一步步的了解机制和结构,给出适合的提示词。tips:如果mj的官网说明更新了,大家可以自主替换也可以用这个方法去学习一些其他技能1——————————————————————————————————————我将使用一个Diffusion Model模型去生成一张图片或照片。现在我提供给你关于这个模型的资料,回答是否可以吗?2——————————————————————————————————————这是Midjourney的工作原理介绍:Midjourney is an Al image generation tool that takes inputs through text prompts and parameters and uses a Machine Learning(ML)algorithm trained on a large amount of image data to produce unique images.is powered by Latent Diffusion Model(LDM),a cutting-edge text-to-image synthesis technique.Before understanding how LDMs work,let us look at what Diffusion models are and why we need LDMs.Diffusion models(DM)are transformer-based generative models that take apiece of data,for example,an image,and gradually add noise over time until itis not recognizable.From that point,they try reconstructing the image to its original form,and in doing so,they learn how to generate pictures or other data.The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pre-trained autoencoders.

训练Midjourney的prompt

附一个GPTs,by:何先森KevinMidjourney专用GPTs【MegaPrompt】应用地址:https://chat.openai.com/g/g-nB0alQejI-megaprompt流程:可以复制每一步,按照下面步骤跟gpt聊下去原理:把mj的官网的说明书喂给gpt,让它根据说明一步步的了解机制和结构,给出适合的提示词。tips:如果mj的官网说明更新了,大家可以自主替换1——————————————————————————————————————我将使用一个Diffusion Model模型去生成一张图片或照片。现在我提供给你关于这个模型的资料,回答是否可以吗?2——————————————————————————————————————这是Midjourney的工作原理介绍:Midjourney is an Al image generation tool that takes inputs through text prompts and parameters and uses a Machine Learning(ML)algorithm trained on a large amount of image data to produce unique images.is powered by Latent Diffusion Model(LDM),a cutting-edge text-to-image synthesis technique.Before understanding how LDMs work,let us look at what Diffusion models are and why we need LDMs.Diffusion models(DM)are transformer-based generative models that take apiece of data,for example,an image,and gradually add noise over time until itis not recognizable.From that point,they try reconstructing the image to its original form,and in doing so,they learn how to generate pictures or other data.

Others are asking
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
stablediffusion学习
以下是关于系统学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,Stable Diffusion 是一个 AI 自动生成图片的软件,通过输入文字就能生成对应的图片。学习 Stable Diffusion 非常简单,不需要深入了解其原理也能熟练使用。 Stable Diffusion 是一种扩散模型的变体,称为潜在扩散模型。其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪和在文本引导下进行多轮预测的 UNET 等。在训练和模型方面,有多种模型实例、训练方法、格式等,如 SD1.5、SDXL 等,还包括融合模型等形式。
2025-03-25
介绍一下什么是stable diffusion
Stable Diffusion 是一种扩散模型的变体,最初称为潜在扩散模型(Latent Diffusion Models)。它是一个 AI 自动生成图片的软件,通过用户输入文字就能生成对应的图片。其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪并在文本引导下进行多轮预测的 UNET 等。 在硬件要求方面,建议使用不少于 16GB 内存,并有 60GB 以上的硬盘空间,需要用到 CUDA 架构,推荐使用 N 卡。目前也有对 A 卡的相关支持,但运算速度明显慢于 N 卡。在训练方面,不同模型有不同的训练要求,例如 SD1.5 训练要求 12G VARM,SDXL 训练要求 16G VARM。此外,还有诸如模型实例、融合模型、微调模型等相关内容。
2025-03-25
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
Stable Diffusion 是 Diffusion Model 的优化版本,引入了潜在空间(Latent Space)技术,这个潜在空间(Latent Space)是什么意思,它的实现原理是什么?
在 Stable Diffusion 模型中,潜在空间(Latent Space)指的是图像的潜在分布,它包含了与图像相关的所有信息。 图像被映射到潜在空间后,扩散过程在这个空间中进行。ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。在潜在空间中,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,这部分通常由潜在空间操作模块来实现。 在 Stable Diffusion 模型中,图像的潜在分布是通过一个编码器解码器结构来学习的。编码器将图像映射到潜在空间,而解码器则将潜在空间中的向量映射回图像空间。通过这种方式,模型可以学习到图像的潜在分布,从而实现图像生成、编辑和操作。 在采样过程中,Stable Diffusion 模型通过逐步降低噪声水平来生成图像。在这个过程中,模型根据当前的噪声水平预测图像的潜在分布,然后根据这个分布生成一个新的图像。这个过程重复进行,直到生成一个高质量的图像。 与之对应的是像素空间(Pixel Space),像素空间指的是图像中每个像素的原始颜色或强度值所组成的空间。图像可以看作是一个二维或三维的矩阵,其中每个元素代表一个像素。在像素空间中,图像的表示是密集的,且包含了大量的细节信息。
2025-03-21
Stable Diffusion有哪些模型
Stable Diffusion 模型包括以下几种: 1. Stable Video Diffusion 模型: 避坑指南:直接使用百度网盘准备好的资源可规避大部分坑;若报显存溢出问题,可调低帧数或增加 novram 启动参数;云部署实战部分,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结:Sora 发布后,之前的视频生成模型略显逊色,Stable Video Diffusion 作为开源项目可自由创作无需充值,有独特优势。其生成的视频画质清晰、过渡自然,虽目前只能生成最多 4 秒视频,但在不断迭代。 2. 潜在扩散模型(Latent Diffusion Models): CLIP:将用户输入的 Prompt 文本转化成 text embedding。 核心组件:VAE EncoderDecoder、UNET(进行迭代降噪,在文本引导下进行多轮预测)。 存放路径:ComfyUI 存放路径为 models/checkpoints/。 基础预训练模型:SD1.5、SDXL。 训练方法:DreamBooth(by Google)。 格式:.pt、.safetensor。 融合模型:checkpoint+checkpoint、Lora+Lora、checkpoint+Lora。 模型自带已适配的 VAE。 微调模型:概念学习、Checkpoint。 3. 不同版本模型对比: Stable Diffusion 2.0 系列模型。 Stable Diffusion 2.1 系列模型。 Stable Diffusion 1.6 系列模型。 SD Turbo 模型。 4. 性能优化方面: 使用 TF32 精度加速 SD 模型训练与推理。 使用 FP16 半精度加速。 对注意力模块进行切片。 对 VAE 进行切片。 大图像切块。 CPU<>GPU 切换。 变换 Memory Format。 使用 xFormers 加速 SD 模型训练与推理。 使用 tomesd 加速 SD 模型推理。 使用 torch.compile 加速 SD 推理速度。 此外,还有关于 Stable Diffusion 训练数据集制作、微调训练、基于其训练 LoRA 模型、训练结果测试评估等方面的内容。
2025-03-21
ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUI-aki(1)\ComfyUI-aki-v1.6\ComfyUI\models\checkpoints\flux1-dev-fp8.safetensors
很抱歉,根据您提供的错误信息“ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUIaki\ComfyUIakiv1.6\ComfyUI\models\checkpoints\flux1devfp8.safetensors”,暂时无法明确具体的问题原因。可能是模型文件格式不被识别,或者文件路径存在错误等。建议您检查文件的完整性和正确性,确保其符合相关软件的要求。
2025-03-07
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
不好量化反馈的领域怎么设计reward model
在不好量化反馈的领域设计 reward model 可以参考以下方法: 推测 OpenAI 可能已经找到了一些非数理学科的 Reward 定义方法,并将这个方法通过 RL 拓展到更多领域。针对不好量化的领域,可以通过写一些文字类的判断标准或规则,让大模型读懂并遵循它,以此来作为是否给予 Reward 的标准,符合标准则 Reward 高,否则 Reward 低。例如,针对写作文,可以列出好文章的标准(结构清晰、文笔优美等规则),让大模型据此来给 Reward,如此就能拓展到很多领域。 可能需要分步骤,先用好给 Reward 的数理问题增强模型的复杂推理能力到一定层级,使其能看懂规则,然后再做那些不好量化 Reward 的领域。 需要注意的是,以上部分内容是猜测,没有依据。同时,ChatGPT 在进行 RLHF 时也存在一定的局限性,其思想还是基于符号 tokenize 在语言交互的范畴上来完成 RL 的,并通过额外训练一个 Reward Model 来进行奖励的反馈。
2025-02-21
list of model format
以下是为您整理的关于模型格式的相关内容: Tripo AI 模型详情页: 格式提供多种模型文件格式,包括:usd、fbx、obj、stl、glb 。 选择“Download”可下载模型,使用“Refine”进一步精修。 T2V01Director 模型: 点选镜头模组后,会将带的镜头词插入 Prompt 中。 表示:单一镜头生效。 表示:两个镜头运动同时生效。 xxx表示:先发生左摇镜头,后发生右移镜头。 ComfyUI FLUX 模型: FLUX.1 有三个变体:FLUX.1。 FLUX.1:通过 API 提供,被认为是最强的模型,在指令跟随、视觉质量、图像细节以及多样性方面表现出色。 FLUX.1”提炼得出。显卡不够的,可以使用 fp8 版本的 flux1devfp8 模型(12GB VRAM 运行)。 FLUX.1:Flux Schnell 是一个蒸馏的 4 步模型,拥有 Apache 2.0 商用许可,属于 4 步模型,适用于在本地进行部署或者个人使用。 模型链接: FLUX.1:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main FLUX.1:https://huggingface.co/Kijai/fluxfp8 FLUX.1:https://huggingface.co/blackforestlabs/FLUX.1schnell/tree/main 模型与工作流地址: https://pan.quark.cn/s/2797ea47f691 https://pan.baidu.com/s/1nV26Fhn3WYBLrg2hSA0_YQ?pwd=cycy 说明文档:https://xiaobot.net/post/8fd64f3f52d14948824d5ee0c38e2594
2025-02-16
big model页面如何进入
以下是关于进入 big model 页面的相关信息: 1. 模型下载: 大多数模型可在 Civitai(C 站)下载,网址为:https://civitai.com/ 。 使用 C 站的方法: 科学上网(自行解决)。 点击右上角筛选按钮,在框中找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 。 看照片,感兴趣的点进去,点击右边“Download”保存到电脑本地。还可点击左上角“Images”,找到喜欢的图片点进去,查看全部信息,点击 Lora 和大模型可直接跳转到下载页面。复制图片信息可点击最下面“Copy...Data”。 2. 模型下载位置: 大模型:SD 根目录即下载 SD 时存放的文件夹。 Lora 和 VAE 也有相应的存放位置。 3. 分辨模型类型: 若不知下载的模型类型及应放的文件夹,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可自动弹出模型信息。 此外,还有关于 Lora 生图的步骤和 Llama3 部署的相关内容: 1. Lora 生图: 点击预览模型中间的生图会自动跳转页面。 可调节模型强度,建议在 0.6 1.0 之间。 能添加 lora 文件,显示训练过的所有 lora 的轮次。 输入正向提示词,选择生成图片数量、尺寸等。 采样器和调度器新手可默认,迭代步数在 20 30 之间,CFG 在 3.5 7.5 之间调整。 随机种子 1 代表随机生成图,复制好的随机种子可粘贴以生成近似结果。 合适的种子和参数可进行高清修复,选择放大倍数等。 2. Llama3 部署: 下载大模型可用于推理,有使用 API 和部署简单界面两种对话方式。 面向小白,可参考部署 webdemo 服务的代码,在/root/autodltmp 路径下新建 chatBot.py 文件并输入相应内容,启动 Webdemo 服务,在终端运行命令,将端口映射到本地,在浏览器中打开链接 http://localhost:6006/ 即可看到聊天界面。
2024-12-11