Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是AGENT

Answer

Agent(智能体)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。

从产品角度看,Agent 可以有具体的身份、性格和角色,比如是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。写好角色个性需要考虑角色背景和身份、性格和语气、角色互动方式、角色技能等方面。

在结合大型语言模型(LLM)的情况下,LLM Agent 是一种能够利用大型语言模型的自然语言处理能力,理解用户输入,并在此基础上进行智能决策和行动的系统。它由规划、记忆、工具和行动等部分组成。规划负责将复杂任务分解成可执行的子任务,并评估执行策略;记忆包括短期记忆和长期记忆,短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据;工具是感知环境、执行决策的辅助手段,如 API 调用、插件扩展等;行动是将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。

在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等关键组成部分。

Content generated by AI large model, please carefully verify (powered by aily)

References

Roger:从产品角度思考 Agent 设计

我们的Agent是一个历史新闻探索向导。身份:历史新闻探索向导性格:知识渊博、温暖亲切、富有同情心角色:主导新闻解析和历史背景分析为了使角色更加生动,我为Agent设计了一个简短的背景故事。比如,这个Agent曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。怎么写好角色个性:角色背景和身份:编写背景故事,明确起源、经历和动机性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格角色互动方式:设计对话风格,从基本问答到深入讨论角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性正如《[Character.ai:每个人都可定制自己的个性化AI](https://waytoagi.feishu.cn/wiki/EoBkwirgjiqscKkAO6Wchyf1nPe)》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家Robert Jeffrey Sternberg提出了“爱情三角理论”,认为爱情包含“激情”、“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。你可以把Agent想象成一个具有特定目标和行为能力的智能角色,它们可以根据环境变化做出相应的决策和反应。[heading3]LLM Agent[content]LLM Agent是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统。这种系统能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。大语言模型-Agent框架[heading3]LLM Agent组成部分:[content]1.规划(Planning)定义:规划是Agent的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。实现方式:通过使用大型语言模型的提示工程(如ReAct、CoT推理模式)来实现精准任务拆解和分步解决。2.记忆(Memory)定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。3.工具(Tools)定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,例如使用插件解析文档、生成图像等。4.行动(Action)定义:行动是Agent将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

问:什么是智能体 Agent

"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

Others are asking
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 3. 记忆:包含短期记忆,所有的上下文学习利用模型的短期记忆来学习;长期记忆,为 Agents 提供长时间保留和回忆(无限)信息的能力,通常通过利用外部向量存储和快速检索来实现。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些与智能体 Agent 相关的目录: 1. 2. 3. 4. 5. 6. 2025AGENT 智能体全球创作大赛的常见问题: 1. 如何报名参加比赛?可以通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可完成报名。 2. 参赛是否需要缴纳费用?本次比赛完全免费,不收取任何报名费用。 3. 可以使用哪些技术和工具开发 Agent?可以使用任何 AI 模型、编程语言和开发工具,只要最终作品符合提交要求即可。 4. 如何提交作品?在本网站直接提交,通过该通道上传您的 Agent 作品和相关材料,同时如果采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可以获得额外的会员奖励。 5. 比赛的奖项设置是怎样的?比赛设有金、银、铜奖和多个单项奖,在获奖后,将获得由组委会颁发的奖金和证书,请保证联系方式的准确性,以便组委会联系您。 6. 参赛作品的知识产权归属?参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-03-25
有关国内Ai Agent的行业分析
以下是关于国内 AI Agent 的行业分析: 市场研究报告: 《爱分析:2024 中国 AI Agent 市场研究报告》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《爱分析:2024 年 AI Agent 实施的明路应用实践报告》指出企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 行业发展现状: 2024 年是大模型持续落地的一年,行业内普遍认为明年将迎来 Agent 的爆发。 从大模型落地具体方式来看,2024 上半年中国 MaaS 市场规模达 2.5 亿元,中国 AI 大模型解决方案市场规模达 13.8 亿元,百度智能云在这两个市场中均获得第一名。 百度智能云旗下有千帆行业场景解决方案,沉淀了制造、能源、交通,政务、金融、汽车、教育、互联网八大行业解决方案。在 2024 百度世界大会上,百度智能云千帆大模型平台发布了工作流 Agent 能力。 AI Agent 特点: 是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。 具有个性化特点,能随着用户使用了解其习惯和想法并作出喜好预测。 能够自主完成任务,如 Auto GPT 可在用户输入目标后自主执行任务、递归地开发和调试代码。 具备多 Agent 协作能力,如斯坦福大学的 SmallVille 项目和 Fixie AI。 应用场景: 目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少,个人消费者方向目前主要是“私人助理”场景。
2025-03-25
多agent能做什么呢?
多智能体(MultiAgent)是由多个自主、独立的智能体组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型的出现,以其为核心构建的 Agent 系统受广泛关注。Agent 系统利用语言模型的归纳推理能力,为不同 Agent 分配角色和任务信息,并配备工具插件以完成复杂任务。目前常见框架多集中在单 Agent 场景,其核心是语言模型与工具的协同配合,可能需与用户多轮交互。同时,更多 Agent 框架关注多 Agent 场景,为不同 Agent 指定角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架的主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,环境包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:通常采用 SOP 思想,将复杂任务分解为多个子任务。 3. 控制器:可以是语言模型或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:相比单 Agent,多 Agent 框架中因 Agent 数量增多,消息数量及相关字段也增多。 在 Agent 产品开发方面,本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。包括短期记忆(messages 里的历史 QA 对)、长期记忆(summary 之后的文本塞回 system prompt)、RAG(向量相似性检索)、Action(触发 tool_calls 标记进行请求循环)等。 Coze Agent 是多功能的 AI 应用程序和聊天机器人开发平台,支持创建各种聊天机器人并部署到不同平台。它采用多 Agent 模式,可提高系统处理能力和效率,在自然语言处理等领域有效。用户能利用插件和工具定制机器人,支持四种主要设计模式,是强大灵活的工具。但内容由 AI 大模型生成,请仔细甄别。
2025-03-25
我是一个产品经理,我想要绘制ai agent对现有业务流程的提升ppt,有没有一些好的案例
以下是一些关于 AI Agent 对现有业务流程提升的案例,希望对您绘制相关 PPT 有所帮助: 1. 在查询问题方面,如使用 Kimi Chat 时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子,同时 PPT 中还介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做补充。 2. 在任务执行的工作流路径规划方面,Agent 能够自行规划,面向简单或线性流程运行。例如,先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。 3. 在多智能体协作方面,吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员等,这些 Agent 相互协作共同开发应用或复杂程序。 4. 对于 AI Agent 的基本框架,OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划主要包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,处理复杂任务,并对过去行动进行自我批评和反思,从错误中学习改进未来步骤,提高最终结果质量。 5. 在信息处理方面,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,不断颠覆传统搜索引擎。智能摘要功能能辅助快速筛选信息,实现信息降噪。 6. 在信息表达方面,现在用自然语言描述一句话就能生成美观可用的图片,降低了不同角色的创作门槛和周期。 7. 对于产品经理的工作流,可使用 AI 进行搞定用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但建议先摸清自己的日常工作流,再根据工作节点线索找到适合自己的工具。 关于 Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。同时,在法律法规方面,相关生命周期参与者应实施适当的透明度措施,直接受 AI 系统使用影响的各方应能获取足够信息以维护自身权利,技术标准也可为评估、设计和改进 AI 系统的透明度和可解释性提供指导。
2025-03-24
字节跳动开源的AGENT TARS
字节跳动开源的自学型 GUI Agent 名为 UITARS,具有以下特点和优势: 能够实现复杂任务自动化,支持跨平台操作,包括网页、桌面和移动端。 性能优于主流模型(如 GPT4 等)。 适用于复杂动态交互、表单填写、批量处理、在线预订等应用场景。 提供开发框架,支持桌面和网页端运行。 相关链接: 其核心能力包括界面识别与元素定位的感知能力、执行操作指令的行动能力、多步任务规划的推理能力以及记录并优化操作流程的记忆能力,能够实现端到端学习,支持“直觉式”反应(System1)与深度思考(System2)。
2025-03-24
关于agent,图片生成
以下是关于 agent 和图片生成的相关信息: 关于 Agent Scheduler 插件用于图片生成: 点击排队设置任务,可在控制面板查看处理生成中的任务。 不想立即运行可点击暂停,也可在设置中勾选“禁用队列自动处理”。 可设置多个任务,完成后在任务历史中查看参数和结果,不满意可重新生成。 如需该插件,可添加公众号【白马与少年】回复【SD】获取。 Agent 相关比赛: 赛道包括图文创作赛道、实用工具赛道、互动创意赛道。 参考方向有内容生成、图像标注、图文匹配、数据可视化、设计辅助、自动化排版、图文识别、新闻和社交媒体、艺术创作、智能产品设计等。 AIGC 相关: Meta 开源了名为 Image Bind 的 AI 模型,是首个能同时绑定六种模式数据的模型,能推进人工智能在跨模式检索、嵌入空间算法、生成等方面的发展。 HuggingFace Transformers Agent 使编码 LLM 能动态组合其他 HF 模型解决多模态任务,提供自然语言 API,具有可扩展性,有单次运行和聊天执行两种方法,预定义工具包括文档问答、文本问答、图像生成等。
2025-03-24