Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG技术是什么,你找到了什么文档

Answer

RAG(Retrieval-Augmented Generation)即检索增强生成,是一种结合了检索和生成的技术。

其在多个基准测试中表现出色,如在 Natural Questions、WebQuestions 和 CuratedTrec 等中。用 MS-MARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用后也有更好结果。基于检索器的方法越来越流行,常与 ChatGPT 等流行 LLM 结合使用以提高能力和事实一致性。

RAG 是一种结合检索和生成的技术,能让大语言模型在生成文本时利用额外的数据源,提高生成质量和准确性。基本流程是:先根据用户输入从数据源检索相关文本片段作为上下文,然后将用户输入和上下文拼接传递给大语言模型,最后提取或格式化大语言模型的输出给用户。

大语言模型存在一些缺点,如无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库对数据的存储和更新稳定,数据更新敏捷且可解释,能降低大模型输出出错可能,便于管控用户隐私数据,还能降低大模型训练成本。

Content generated by AI large model, please carefully verify (powered by aily)

References

检索增强生成 (RAG)

RAG在[Natural Questions(opens in a new tab)](https://ai.google.com/research/NaturalQuestions)、[WebQuestions(opens in a new tab)](https://paperswithcode.com/dataset/webquestions)和CuratedTrec等基准测试中表现抢眼。用MS-MARCO和Jeopardy问题进行测试时,RAG生成的答案更符合事实、更具体、更多样。FEVER事实验证使用RAG后也得到了更好的结果。这说明RAG是一种可行的方案,能在知识密集型任务中增强语言模型的输出。最近,基于检索器的方法越来越流行,经常与ChatGPT等流行LLM结合使用来提高其能力和事实一致性。LangChain文档中可以找到[一个使用检索器和LLM回答问题并给出知识来源的简单例子(opens in a new tab)](https://python.langchain.com/docs/use_cases/question_answering/quickstart)。

如何基于飞书能力来开发问答机器人

RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的技术,它可以让大语言模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。[heading2]流程:[content]RAG的基本流程是:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大语言模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大语言模型的输出中提取或格式化所需的信息,返回给用户。[heading2]优点:[content]RAG技术的优点是可以利用额外的数据源提供模型所缺乏的知识和信息,从而提高生成的质量和多样性。

问:RAG 是什么?

RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。简单来说,就是通过检索的模式,为大语言模型的生成提供帮助,从而使大模型生成的答案更符合要求。[heading2]为什么LLM需要RAG?[content]众所周知,大模型已经在很多领域和问题下都取得了很好的效果,那为什么还需要RAG进行检索优化呢?[heading3]LLM的缺点[content]1.LLM无法记住所有知识,尤其是长尾的。受限于训练数据、现有的学习方式,对长尾知识的接受能力并不是很高;长尾数据是指数据集中某些类别数量较少,而其他类别样本数较多的不平衡“长尾”状态。例如在自然语言处理中,一些少见的词汇出现频率很低,而常见的词汇出现频率很高。2.LLM的知识容易过时,而且不好更新。只是通过微调,模型的接受能力其实并不高而且很慢,甚至有丢失原有知识的风险;3.LLM的输出难以解释和验证。一方面最终的输出的内容黑盒且不可控,另一方面最终的结果输出可能会受到幻觉之类的问题的干扰;4.LLM容易泄露隐私训练数据。用用户个人信息训练模型,会让模型可以通过诱导泄露用户的隐私;5.LLM的规模大,训练和运行的成本都很大。[heading3]RAG的优点[content]1.数据库对数据的存储和更新是稳定的,不像模型会存在学不会的风险。2.数据库的数据更新可以做得很敏捷,增删改查可解释,而且对原有的知识不会有影响。3.数据库的内容是明确、结构化的,加上模型本身的理解能力,一般而言数据库中的内容以及检索算法不出错,大模型的输出出错的可能就大大降低。4.知识库中存储用户数据,为用户隐私数据的管控带来很大的便利,而且可控、稳定、准确。5.数据库维护起来,可以降低大模型的训练成本,毕竟新知识存储在数据库即可,不用频繁更新模型,尤其是不用因为知识的更新而训练模型。

Others are asking
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
请推荐一份学习rag的资料
以下是为您推荐的学习 RAG(RetrievalAugmented Generation,检索增强生成)的资料: 1. 《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf),该资料对 RAG 进行了较为全面的介绍和分析。 2. 关于新知识的学习,您可以参考“胎教级教程:万字长文带你理解 RAG 全流程”。其中提到可以通过 Claude 帮助了解细节概念,然后再通过 Coze 搭建 Demo 来实践学习。还不知道 Coze 是什么的同学可以看公开分享: 。 3. 了解“RAG 是什么?”:RAG 是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型提供额外的、来自外部知识源的信息。通过检索模式为大语言模型的生成提供帮助,使生成的答案更符合要求。同时,还介绍了大模型存在的缺点以及 RAG 的优点,如数据库对数据存储和更新稳定、敏捷、可解释等。 希望这些资料对您学习 RAG 有所帮助。
2025-03-25
什么是ai中的RAG
RAG 是检索增强生成(RetrievalAugmented Generation)的缩写,是一种结合了检索模型和生成模型的技术。其核心目的是通过某种途径把知识告诉给 AI 大模型,让大模型“知道”我们的私有知识,变得越来越“懂”我们。 RAG 的核心流程是:根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。 RAG 的最常见应用场景是知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 RAG 的基本流程如下: 1. 首先,给定一个用户的输入,例如一个问题或一个话题,RAG 会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。 2. 然后,RAG 会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如 GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。 3. 最后,RAG 会从大模型的输出中提取或格式化所需的信息,返回给用户。
2025-03-23
RAG
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 引入 RAG 来完成这类任务,它把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入并检索相关/支撑文档,给出来源,与原始提示词组合后送给文本生成器得到最终输出,能适应事实随时间变化的情况,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点:数据库对数据的存储和更新稳定,无学习风险;数据更新敏捷,可解释且不影响原有知识;降低大模型输出出错可能;便于管控用户隐私数据;降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并针对每个难题有相应的解决策略。
2025-03-23
RAG 开发实战
以下是关于 RAG 开发实战的详细内容: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成质量和准确性。其基本流程为:首先,用户给出输入,如问题或话题,RAG 从数据源中检索相关文本片段(称为上下文);然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),此输入通常包含提示,指导模型生成期望输出(如答案或摘要);最后,从大模型输出中提取或格式化所需信息返回给用户。 以餐饮生活助手为例进行 RAG 的 Langchain 代码实战,需完成以下步骤: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源(如数据库、文件、API 等),注册到 Langchain 中,并提供统一接口和方法,方便 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,代理管理器可让开发者定义不同 LLM 代理及其功能逻辑,并提供统一接口和方法,方便用户与 LLM 代理交互。
2025-03-20
如何一步一步实现RAG 模型的私有化部署
要一步一步实现 RAG 模型的私有化部署,可参考以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 关于 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 需先安装,访问 https://ollama.com/download/ 下载安装,安装后确保 ollama 后台服务已启动。 5. 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答问题实现 RAG。 6. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯。 2. 上下文数据质量和大模型的性能决定 RAG 系统性能上限。
2025-03-20
知识库有没有相关文档,教怎么做创意积累的?
以下是关于创意积累的相关内容: 在日常浏览、参观场馆时积累描述词,也可参加关键词学社增加认知。 经常参加 AI 绘画的 prompt battle 活动有助于内容创作相关的积累,该活动每周六和周日晚上进行,有 10 分钟创作、2 分钟评选的规则,还有多种主题,现在高校之间可组织此类活动,还有早晨版活动。 某板块收录 made journey 相关内容,这有助于开拓视野,如同 read in prompt out 的过程,需先获取知识再与大语言对话。这里收录了很多有意思的词用于与 AI 对话看效果,还举了如粉色可用空灵粉表示、宋徽宗相关提示词可用于创意等例子。 关键词学设每天有比赛或提示词,很多同学参与共创知识库。学设的微信群难管理已转至飞书群,感兴趣的同学可加入。此外还收集了 AI 视频类词汇,还有类似官方提示工坊的内容可供体验。 社区为学习者提供清晰的学习路径,从 AI 基础知识到进阶技术,逐步培养他们成为创作者和引领者。学习者通过社区内丰富的课程、活动和竞赛不断提升自己,逐步积累能力。 社区中有最全最新的提示词教程和创意。
2025-03-25
我想找你之前分享过的文档,有关提示词批量处理的
以下是为您整理的有关提示词批量处理的相关内容: 在 Coze 上创建工作流、Bot 中,大模型组件的系统级提示词用于定义模型的角色和任务,与外层用户直接交互的提示词不同。系统级提示词侧重于模型的内部工作机制,外层提示词则更多关注根据用户指令进行编排和响应。通过精心设计这两种提示词,可增强模型对用户指令的处理能力,确保工作流顺畅高效。 在大模型组件中,批处理即迭代处理,可对集合或数组中的每个元素进行批量处理。通过依次遍历集合或数组,每个元素都能经过相同处理流程,关键在于通过有限循环实现高效数据处理。批处理中可设置循环次数和并发量,例如 Coze 的大模型组件最多支持 200 次循环,可通过调整并发量在一次循环中同时处理多个元素以提高处理效率。 在 AI 应用到工作场景中制作单词卡片时,提示词编写包括生成符合要求的单词卡内容并填入 Excel 文件中。通过给出基本示例和附加规则限制,输入多个单词可实现同时解析,虽效果可能因方法论不足而有差异,但大体格式符合要求。批量产出时需上传压缩文件并完成套版,即可获得符合要求的卡片。
2025-03-24
ComfyUI的文档在哪里
以下是一些可以获取 ComfyUI 相关文档和学习资料的途径: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。您可以在找到相关信息。 2. 优设网:提供了一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了 ComfyUI 的特点、安装方法以及如何使用 ComfyUI 生成图像等内容。教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解 ComfyUI 的用户。可以在找到相关教程。 4. Bilibili:提供了一系列的 ComfyUI 视频教程,涵盖了从新手入门到精通的各个阶段。可以在找到视频教程。 此外,还有以下相关资料: 1. 关于 ComfyUI 节点的详细文档,由卡卡布使用 AI 分析整理,包括了 200+官方节点和 1000+第三方节点的详细信息,涵盖每个节点的功能、选项作用及代码实现,便于用户搜索和了解 ComfyUI 节点。 2. 在使用 ComfyUIAdvancedLivePortrait 这个节点时,可能会遇到少了 landmark_model.pth 这个文件的错误,在网盘里可以找到完整的。相关资料链接: 百度网盘:通过网盘分享的文件:图片换背景 链接:https://pan.baidu.com/s/1jN_0R791QmjxbIEgzRyv9w?pwd=cycy 提取码:cycy 说明文档:https://xiaobot.net/post/4ad59e7546e443cba0d270eab7e0da98 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/a4b94677ce99 工作流:https://www.liblib.art/modelinfo/cc6d850d24f6462084c0bc1eb5374e3c?from=personal_page 视频:https://www.bilibili.com/video/BV1FzsbeTEQV/?vd_source=ecb7194379e23ea8b1cb52e3bd5d97ef workflow:https://www.shakker.ai/modelinfo/cc6d850d24f6462084c0bc1eb5374e3c?from=personal_page video:https://youtu.be/W0x3VjwWnAQ 请注意,内容由 AI 大模型生成,请仔细甄别。由于 AI 技术更新迭代,请以文档更新为准。
2025-03-22
请你帮我找到AI编程与炼金术 build on trae的课程文档
以下是关于“AI 编程与炼金术 Build on Trae”的课程文档相关内容: 课程活动:包括制作图片字幕生成器、开发网页金句卡片生成器、制作一档专属自己的 AI 博客、制作中文名字生成器、构建一个优质文章推荐网站、制作表情包生成器、开发 Life Coach 应用、构建浏览器智能插件、开发个人网页/小程序,并进行优化部署等。 知识图谱: 章节: 三.使用 DeepSeek R1 给老外起中文名 八.做一档你自己的 AI 播客 九.柴犬表情包生成器实战(Coze bot+API) 十.做一个微信小程序 一.Trae 的介绍/安装/疑难杂症 二.图片字幕生成器 四.DeepSeek R1 驱动的 Life Coach 五.DeepSeek 驱动的网页金句卡片生成 六.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格) 七.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)(下) 知识点: Node.JS 安装 Python 安装 相关链接: 其他各章节对应的具体链接 您可以根据上述内容,通过相应的链接获取更详细的课程文档信息。
2025-03-21
有没有能将PRD文档转化成产品培训文档的AI工具
以下是一些能够将 PRD 文档转化成产品培训文档的 AI 工具: Tome:于 3 月 23 日推出了第一个基于文档的 AI 演示工具,基于 GPT4,能够将文档转换成演示文稿、叙述和故事。链接:https://beta.tome.app/ Gamma:上周五推出了文生演示文稿工具。 ChatPRD、WriteMyPRD、Uizard、tldraw:可以通过人类语言描述想要的产品,得到 80%的完成稿,然后进行修改和发布。
2025-03-20
介绍MCP的文档有哪些
以下是关于 MCP 的一些文档介绍: 1. 《Windsurf Wave3:MCP 协议让 AI 直接读取控制台错误,自动化网页调试不用复制粘贴了!Tab 智能跳转、Turbo 模式》:介绍了 MCP 的基本概念,即纯 LLM 无法行动,MCP 工具可充当其与现实世界交互的手并反馈结果指导下一步行动。同时提供了 MCP 官方文档和 Cursor 关于 MCP 的介绍链接:https://modelcontextprotocol.io/ 、https://docs.cursor.com/context/modelcontextprotocol 。还提到了一些相关工具如 Brave Search、Puppeteer 和 Sequential Thinking 等能让调试和搜索更顺畅,以及热门的 Playwright CDP 能让 AI 控制浏览器变得简单等内容。 2. 《Model Context Protocol官方网站找到,包括架构详细说明、基础协议文档、服务器功能说明、客户端功能文档、贡献指南等。此规范为 AI 应用生态系统提供了标准化的集成方案。 3. 《什么是模型上下文协议(MCP)?它如何比传统 API 更简单地集成 AI?》:解释了 MCP 的价值、工作原理,以及它与传统 API 的关键区别。如 MCP 是一种全新的开放协议,专门用于标准化地为大语言模型(LLMs)提供应用场景和数据背景,像 AI 领域的“USBC 接口”能让不同的 AI 模型与外部工具和数据源轻松连接。还对比了传统 API 整合的复杂性,以及介绍了 MCP 最早由 Anthropic 公司开发,现已成为开放协议并被更多企业和开发者采用。
2025-03-18
可以为我找到在线更换图片颜色服务的AI网站吗
以下是一些可以在线更换图片颜色服务的 AI 网站相关信息: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 在最近新上线的 controlnet 模型中,Recolor 新模型可将黑白图片重新上色。 对于人物照片还原,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容,如黑色的头发、黄色的皮肤、深蓝色的衣服、浅蓝色的背景等。ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 您可以通过以下网址获取更详细内容:https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw
2025-03-25
哪里可以找到免费且可以系统学习机器学习的课程
以下是一些可以免费系统学习机器学习的课程资源和学习路径: 1. 对于大型语言模型(LLM)开发的学习: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法,掌握相关论文,如 Attention is All You Need、BERT 论文等。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 2. 神经网络架构方面: 神经网络是机器学习文献中的一类模型,在完成吴恩达的 Coursera 机器学习课程后,可以寻找 Geoffrey Hinton 的机器学习神经网络课程。 一般神经网络架构可分为三类:前馈神经网络,这是实际应用中最常见的神经网络类型;循环网络,在他们的连接图中定向了循环,更具有生物真实性。 3. 强化学习的入门学习: 如果基础薄弱,可先学习概率论和线性代数相关课程。 对机器学习无基础的话,先看吴恩达的课程,再以李宏毅的课程作为补充,只看前几节讲完神经网络的部分。 学完后跟着《动手学深度学习 https://hrl.boyuai.com/》动手学习,只看前五章。 接着看 B 站王树森的深度学习课程的前几节学习强化学习基础知识点。 最后可以看《动手学强化学习》,看到 DQN 的部分。
2025-03-22
希望找到一个可以帮助我写论文的模型
以下是一些关于利用模型写论文的信息: 可以向 LLM 寻求写作建议,甚至直接要求它帮您写论文。例如提供关于个人背景的信息,让其生成大学申请论文。但需要注意,这种方式可能存在道德问题。 可以直接给模型相关论文,让其完成任务,如写出论文中的例子。模型能够理解复杂的信息,不需要过度简化。 例如用 ChatGPT 撰写“宇宙类比大规模语言模型”的论文时,可以给出相关提示词,从宏观天文学、微观量子力学、哲学等角度展开讨论,并明确探讨方向。
2025-03-14
哪里可以找到开源的ai agent
以下是一些可以找到开源 AI Agent 的途径和相关信息: AutoGPT 和 BabyAGI 是最早实现让 LLM 自己做自动化多步骤推理的开源智能代理,在去年 GPT4 刚发布时风靡全球科技圈。 智谱·AI 开源了一些包含 Agent 能力的模型,如 AgentLM7B、AgentLM13B、AgentLM70B 等,相关信息和代码链接可在相应的平台获取。 Andrej 的 LLM OS 中包含了相关模块。 OpenAI 的研究主管 Lilian Weng 曾写过一篇博客《LLM Powered Autonomous Agents》介绍了 Agent 的设计框架。
2025-03-13
如何在20天内快速学习AI技术,并找到工作
以下是在 20 天内快速学习 AI 技术并找到工作的一些建议: 1. 基础知识学习: 了解人工智能、机器学习、深度学习的定义及其之间的关系。 简要回顾 AI 的发展历程和重要里程碑。 熟悉统计学基础,如均值、中位数、方差等统计概念。 掌握线性代数基本概念,如向量、矩阵。 学习基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 学习监督学习中的常用算法,如线性回归、决策树、支持向量机(SVM)。 熟悉无监督学习中的聚类、降维等算法。 了解强化学习的基本概念。 3. 评估和调优: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握使用网格搜索等技术优化模型参数。 4. 神经网络基础: 理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践操作: 像案例中的二师兄一样,通过实际操作和练习来巩固所学知识,例如使用相关工具进行炼丹。 参与社群交流和项目实践,如加入 Prompt battle 社群,尝试用 GPT 和 SD 制作图文故事绘本、小说推文等项目。 需要注意的是,20 天的时间较为紧张,要保持高强度的学习和实践,同时不断总结和反思,提升自己的能力,以增加找到工作的机会。
2025-03-11
AI技术趋势
AI 技术的发展历程和前沿技术点如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,《2024 年度 AI 十大趋势报告》指出: 1. 大模型创新:架构优化加速涌现,融合迭代大势所趋。 2. Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 3. AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 4. AI 应用格局:第⼀轮洗牌结束,聚焦 20 赛道 5 大场景。 5. AI 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 6. AI 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 7. AI 产品趋势:多模态上马,Agent 席卷⼀切,高度个性化呼之欲出。 8. AI 智变千行百业:左手变革生产力,右手重塑行业生态。 9. AI 行业渗透率:数据基础决定初速度,用户需求成为加速度。 10. AI 创投:投融资马太效应明显,国家队出手频率提升。 学习路径方面: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-24
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24
AI发展技术原理脑图
以下是关于 AI 发展技术原理的相关内容: 腾讯研究院发布的“AI50 年度关键词”报告,基于全年三十余万字的 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,通过“快思考”与“慢思考”两种维度进行分析,形成 50 张 AI 技术图景卡片。其中“快思考”维度采用人机协同方式呈现印象卡片,“慢思考”维度深入分析技术发展底层逻辑。 DiT 架构是结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型,其带来了图像生成质的飞跃,且 Transformer 从文本扩展至其他领域,Scaling Law 在图像领域开始生效。 从 AI 发展历程来看,自 1950 年提出至今短短几十年,在国内近 20 年随着互联网发展才开始普及。最初应用主要是基于 NLP 技术的聊天和客服机器人,随后中英文翻译、语音识别、人脸识别等技术取得突破并广泛应用。但以前模型应用范围相对狭窄,而 OpenAI ChatGPT 等大型语言模型的突破展示了新的发展路线,通过大规模模型预训练可涌现出广泛智能应用。 小白理解 AI 技术原理与建立框架的相关内容包括:思维链可显著提升大语言模型在复杂推理的能力;RAG 是检索增强生成,可搭建企业和个人知识库;PAL 是程序辅助语言模型;ReAct 是 reason 与 action 结合的框架,可让模型动态推理并与外界环境互动。 希望以上内容对您有所帮助。
2025-03-24
AI发展背后是哪些技术进步推动的,原理是什么?
AI 发展背后主要由以下技术进步推动: 1. 核心架构:Transformer 和 Diffusion 这两种架构分别在数据转换和数据向图像转换方面发挥了关键作用,构成了当前 AI 技术的基石。 2. 算力提升:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供强大支持。 3. 人才网络:AI 领域的关键人才大多源自 Google 及其相关实验室和收购的公司,形成强大人才网络,推动了技术发展,并培养了一批领军人物,人才在不同公司间的流动和合作促进了 AI 技术的快速进步。 其原理在于:这些技术的协同作用使得 AI 能够更高效地处理和分析大量数据,实现更复杂的任务和功能。例如,强大的算力能够支持大规模的数据训练和模型优化,优秀的架构能够提高数据处理和模型表达能力,而人才的创新和合作则不断推动技术的突破和应用拓展。
2025-03-24
一个从来没有接触过AI技术的、电脑方面就会打字的人怎么学习AI及应用
对于从未接触过 AI 技术但会打字的新手,以下是学习 AI 及应用的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想深入了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,有以下学习路径: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-22
ManusAI核心技术解读
Manus AI 的核心技术包括以下几个方面: 1. 代理功能:能够自动完成任务并交付完整结果。最终交付的结果形式多样,如文档、交互网页、播客、视频、图表等,使用户能更直观地获取信息。 2. 充分利用 AI 能力:不仅进行推理和任务规划,还结合代码能力生成最终结果。 3. 云端自动运行:AI 在云端电脑上完成包括数据收集、内容撰写、代码生成等任务。其体验特点是任务运行时间较长,但最终交付的结果超出预期。 您可以通过以下链接获取更多详细信息: 体验报告:
2025-03-22