Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用deepseek写论文的指令

Answer

以下是一些用 DeepSeek 写论文的指令和相关方法:

  1. 模糊指令优化:
    • 对于宽泛需求,可添加维度约束,例如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”。
    • 对于主观表述,可量化标准,比如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。
  2. 迭代优化法:
    • 首轮生成:获取基础内容。
    • 特征强化:请加强第三段的技术细节描述。
    • 风格调整:改用学术会议报告语气,添加结论部分。
    • 最终校验:检查时间逻辑一致性,列出可能的事实性错误。
  3. 文风转换矩阵:
    • 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象”。
    • 文体杂交:“将产品说明书改写成《史记》列传格式”。
    • 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话”。
  4. 领域穿透技术:行业黑话破解,例如“解释 Web3 领域的‘胖协议瘦应用’理论”。
  5. 商业决策支持。
  6. 场景化实战策略:
    • 创意内容生成。
    • 技术方案论证。
  7. 效能增强技巧:
    • 对话记忆管理:
      • 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。
      • 信息回溯:“请复述之前确认的三个设计原则”。
      • 焦点重置:“回到最初讨论的供应链问题”。
    • 输出质量控制:
      • 对于过度抽象,“请具体说明第三步操作中的温度控制参数”。
      • 对于信息过载,“用电梯演讲格式重新组织结论”。
      • 对于风格偏移,“回归商务报告语气,删除比喻修辞”。
  8. 特殊场景解决方案:
    • 长文本创作:
      • 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。
    • 敏感内容处理:
      • 概念脱敏法:“用经济学原理类比说明网络审查机制”。
      • 场景移植法:“假设在火星殖民地讨论该议题”。
Content generated by AI large model, please carefully verify (powered by aily)

References

集合·DeepSeek 提示词方法论

虽然R1推理能力比较强,有些你想表达的不一定完全与模型吻合,因此建议可以多加清晰指令[heading3]1.模糊指令优化[content]|问题类型|修正方案|示例对比||-|-|-||宽泛需求|添加维度约束|原句:"写小说"→修正:"创作以AI觉醒为背景的悬疑短篇,采用多视角叙事结构"||主观表述|量化标准|原句:"写得专业些"→修正:"符合IEEE论文格式,包含5项以上行业数据引用"|[heading3]2.迭代优化法[content]1.首轮生成:获取基础内容2.特征强化:请加强第三段的技术细节描述3.风格调整:改用学术会议报告语气,添加结论部分4.最终校验:检查时间逻辑一致性,列出可能的事实性错误[heading2]五、行业应用案例[heading3]1.技术开发场景[heading3]2.商业分析场景[heading2]六、异常处理方案[content]信息幻觉:追加请标注所有不确定陈述,并提供验证方法格式偏离:使用严格遵循以下模板:第一行...第二行...深度不足:触发请继续扩展第三章节内容,添加案例佐证[heading2]七、效能监测指标[content]1.首次响应准确率:目标>75%2.多轮对话效率:问题解决平均轮次<33.复杂任务分解:支持5级子任务嵌套

集合·DeepSeek 提示词方法论

|指令结构|效果示例||-|-||作家风格移植|"用鲁迅杂文风格写职场PUA现象"||文体杂交|"将产品说明书改写成《史记》列传格式"||学术口语化|"把这篇论文摘要翻译成菜市场大妈能听懂的话"|[heading3]2.领域穿透技术[content]行业黑话破解→"解释Web3领域的'胖协议瘦应用'理论"[heading3]商业决策支持[heading2]三、场景化实战策略[heading3]创意内容生成[heading3]技术方案论证[heading2]四、效能增强技巧[heading3]对话记忆管理[content]上下文锚定:"记住当前讨论的芯片型号是麒麟9010"信息回溯:"请复述之前确认的三个设计原则"焦点重置:"回到最初讨论的供应链问题"[heading3]输出质量控制[content]|问题类型|修正指令||-|-||过度抽象|"请具体说明第三步操作中的温度控制参数"||信息过载|"用电梯演讲格式重新组织结论"||风格偏移|"回归商务报告语气,删除比喻修辞"|[heading2]五、特殊场景解决方案[content]1.长文本创作分段接力法:"先完成故事大纲→逐章扩展→最后进行伏笔校验""确保新章节与前文的三处细节呼应"1.敏感内容处理概念脱敏法:"用经济学原理类比说明网络审查机制"场景移植法:"假设在火星殖民地讨论该议题"

🐋全新AI整活计划:DeepSeek小说家 2025年2月9日

[heading2]总结关于提示词编写及AI应用的探讨理性决策提示词:介绍了用于不确定世界中理性决策的提示词编写方法,包括收集信息、重新定义问题、运用Mini Max Regret方法等步骤。示例的价值:示例是一种隐性的需求说明书,添加示例可让大模型更懂需求,但Deseek R1报告中提到few short可能影响模型性能,不过不绝对。自用与他用提示词:自用和他用的提示词在稳定性、经济性、可维护性等方面有较大区别,工业化提示词需稳定、经济且易维护。改进指令遵循:将R1的思维链给cloud回答,结果大大改进。AI应用于软件开发:未来借助AI模型的API和编写提示词,可快速实现软件开发,如开发查单词软件。关于AI写作与模型的探讨顶级文学作品:分享了一篇在小红书上看到的优秀小说,其文风细腻、语言克制,每个片段、隐喻和比喻都精心设计。写作方式思考:认为写小说既需要精心设计也需要直觉创作,如莫言的作品有凭直觉写作的特点,而推敲则是精心琢磨的代表,两种方式不冲突。好文字的定义:好的文字能引起生理共鸣和情绪,若能引起众多人的共鸣则可能成为公认的佳作。****:用Deepseek写小说要能引起共鸣和考虑人类共性,文字要感动人。模型特点与推荐:指出Cloud 3.5模型多样性差,Deepseek R1有缺陷但也不错,推荐了街悦新城的文学大师版等模型。

Others are asking
Deepseek-R1的系统提示词
以下是关于 DeepSeekR1 的系统提示词的相关内容: 核心原理认知: AI 特性定位:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架: 四要素模板。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧: 思维链引导:分步标记法,苏格拉底式追问。 知识库调用:领域限定指令,文献引用模式。 多模态输出。 此外,还有关于 DeepSeekR1 的其他相关报道,如宝玉日报 1 月 26 日中对其的介绍,以及利用 DeepSeekR1 一分钟生成小红书爆款单词视频的相关内容,包括生成单词的步骤、角色、技能和限制等。
2025-03-18
给我一个siliconflow部署deepseek的教程
以下是关于 siliconflow 部署 deepseek 的教程: 基于 FP4 优化的 DeepSeekR1 使用 TensorRTLLM 部署: 模型地址:https://huggingface.co/nvidia/DeepSeekR1FP4 硬件要求:需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。 性能优化:代码利用 FP4 量化、TensorRT 引擎和并行计算,旨在实现高效、低成本的推理,适合生产环境或高吞吐量应用。 在 Docker+RAGFlow+Ollama 中配置本地部署的 DeepSeek 模型: 返回 RAGFlow 中,打开右上角设置,进入模型提供商。 选择 Ollama,配置相关信息,基础 URL 如下配置。 配置完成后点击确定。 导入一个 embedding 模型,用于文本的向量化。 设置系统模型设置。 进入数据集,导入文件,可设置文件夹当作知识库。 对文件进行解析,解析速度取决于本机 GPU 性能。 解析完成后进行检索测试,没问题即可进入聊天界面。 云端模型部署实操: 登录 Pad 控制台,讲解 model gallery 工具及模型。 演示部署 Deepseek R1 和千问 7B 模型,包括选框架、资源、出价等。 介绍查看部署状态、日志方法。 说明用 postman 在线调试模型获取名称及后续使用方式。 模型蒸馏概念、应用场景及本地部署实操: 先介绍云平台部署情况。 讲解模型蒸馏概念、方式,阐述其应用场景及修复模型幻觉的作用。 进行实操演示,带领大家在 model gallery 部署 7B instruct 模型,展示部署步骤、资源竞价等内容,部署完成后用简单问题测试模型并呈现错误回答。
2025-03-18
用deepseek赋能家庭教育
以下是关于使用 DeepSeek 赋能家庭教育的相关信息: 清华大学发布的《》,首先介绍了选择 AI 学习工具的方法及 DeepSeek 的多种使用入口、模式对比。接着阐述了在家庭教育中的基础聊法原则、互动策略和多种场景化聊法模版。然后通过多学科案例展示其辅助学习的方式,还涉及亲子沟通、情绪管理、职业规划等内容。最后介绍了 DeepSeek 在不同教育场景下与其他工具组合的应用范式,为家庭教育提供了全面的 AI 使用指南。 此外,还有其他相关报告,如《》
2025-03-18
我准备用无影云电脑部署一个独属于我们公司的AI,在大模型方面我准备用deepseek的满血版,你有什么建议吗
以下是关于您准备用无影云电脑部署公司专属 AI 并使用 deepseek 满血版大模型的一些建议: 1. 本地部署方面:如果拥有云服务器,要了解如何进行本地部署以及满血版本地部署的实际情况。 2. 免费额度:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 3. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 4. 模型蒸馏微调:可以学习并实践模型的蒸馏和微调相关知识。 5. 获取 DeepSeekR1 满血版密钥: 注册并登录火山引擎,点击立即体验进入控制台。 创建一个接入点,点击在线推理创建推理接入点。 为接入点命名为 DeepSeekR1。 若有提示未开通模型,点击“立即开通”,勾选全部模型和协议一路开通。 确认无误后点击“确认接入”按钮。 复制推理点的 ID 并保存。 点击【API 调用】按钮,复制 API Key 并保存。 6. 模型选择与配置:可以参考理想的配置,如推理模型选择 gemini2.0flashthinking,代码模型选择 claude3.5sonet 或 gpt4omini,多模态模型选择 gemini2.0flash,常规模型选择 DeepSeek V3。同时,了解 OpenRouter 新发布的 BYOK 功能,它能集成第三方 Key,整合免费额度并解放更多槽位。若对现有供应商支持的模型不满意,还可考虑 simpleoneapi。
2025-03-18
deepseek
DeepSeek 具有独特的特点和发展历程: 秘方是硅谷味儿的:将其比喻成“AI 界的拼多多”是偏颇的,其在硅谷受到关注和追逐并非近期才发生。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新引发小范围轰动。而在国内舆论场,它被描摹成“大模型价格战的发起者”。 V3 可能是 DeepSeek 的 GPT3 时刻:若 V3 真是如此,后续发展未知,但 DeepSeek 应能为全人类的人工智能事业做出更大贡献,且它已是中国最全球化的 AI 公司之一,赢得尊重的秘方也是硅谷味儿的。 一个提示词能让 DeepSeek 能力更上一层楼:通过 Coze 做了效果对比测试。使用方法为:搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 Deepseek,认真阅读开场白后正式开始对话。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量等,还采用 XML 进行规范设定。完整提示词有 v1.3 版本,特别鸣谢李继刚和 Thinking Claude 等。
2025-03-18
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方特点:DeepSeek 不是“中国式创新”的产物,其秘方是硅谷味儿的。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 2. V3 时刻:如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 应会为全人类的人工智能事业做出更大贡献,且它已是中国最全球化的 AI 公司之一,赢得尊重的秘方也是硅谷味儿的。 3. 提示词提升能力:通过一个提示词 HiDeepSeek 能让 DeepSeek 能力更上一层楼。使用方法包括搜索网站、发送代码、阅读开场白后开始对话。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量、设计阈值系统、用 XML 规范设定等。特别鸣谢了李继刚和 Thinking Claude 等。
2025-03-17
你能给我一些论文降aicg率的指令吗,我论文AICG率太高了
很抱歉,所提供的内容中没有直接关于论文降 AICG 率的指令。但一般来说,降低论文的重复率可以通过以下方法: 1. 重新表述:对原文中的语句进行重新组织和表达,避免直接复制粘贴。 2. 增加引用:合理引用权威文献,并正确标注引用格式。 3. 深入研究:对相关主题进行更深入的探讨,提供独特的观点和分析。 4. 检查修改:使用专业的查重工具,对论文进行多次检查和修改。
2025-03-17
描述相关概念的时候需要给ai什么指令
以下是关于给 AI 描述相关概念时的一些指令示例: 在法律法规方面,如《人工智能法案》中,指令包括发布年度报告以评估法规实施情况、审查严重事件报告、协助建立监管沙箱、组织与相关机构的会议和咨询等。 对于 Midjourney 生成 UI 界面,若指定生成某个页面(如首页、登录页等),可添加页面指令描述,如“landing page”“Profile Page”等。对于社交平台,关键词“landing page”可生成社交平台的登录页设计;对于信息类,关键词“Profile Page”可生成人力资源类产品的个人资料页。 需要注意的是,目前 Midjourney 产出的设计图更适合在 APP 设计的初始阶段提供灵感和创意,直接落地开发仍有距离,但随着 AI 技术的迭代,这种距离有望缩短。
2025-03-16
我想写一篇本科生论文,利用ai工具来帮我更好完善,需要用到那些常用指令
在本科生论文写作中,以下是一些常用的 AI 指令和相关工具: 1. 内容生成和辅助写作: 指令示例:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 工具:Grammarly ,通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量;Quillbot ,一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 2. 文献管理和搜索: 工具:Zotero ,结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献;Semantic Scholar ,一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 3. 研究和数据分析: 工具:Google Colab ,提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化;Knitro ,一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: 工具:LaTeX ,虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式;Overleaf ,一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: 工具:Turnitin ,一个广泛使用的抄袭检测工具,帮助确保论文的原创性;Crossref Similarity Check ,通过与已发表作品的比较,检测潜在的抄袭问题。 需要注意的是,使用这些 AI 工具时,要结合自己的写作风格和需求,选择最合适的辅助工具,同时要确保使用方式符合学术道德和规范。
2025-03-15
我需要用deepseek生成参考文献,我需要指令
以下是关于 DeepSeek 生成参考文献的相关指令: 1. 基础指令框架: 四要素模板:如果不知道如何表达,还是可以套用框架指令。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 2. 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 高级调试策略: 模糊指令优化:对于宽泛需求,添加维度约束;对于主观表述,量化标准。 迭代优化法:首轮生成获取基础内容,特征强化加强某段的技术细节描述,风格调整改用特定语气并添加结论部分,最终校验检查时间逻辑一致性和可能的事实性错误。 希望这些信息对您有所帮助。
2025-03-14
deepseek论文指令
以下是关于 DeepSeek 提示词的详细内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型/输出格式/知识范围。 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感。 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求。 占位符标记:用{{}}标注需填充内容。 优先级符号:>表示关键要求,!表示禁止项。 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估。 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差。 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌。 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型:宽泛需求、主观表述。 修正方案:添加维度约束、量化标准。 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 2. 迭代优化法 首轮生成:获取基础内容。 特征强化:请加强第三段的技术细节描述。 风格调整:改用学术会议报告语气,添加结论部分。 最终校验:检查时间逻辑一致性,列出可能的事实性错误。 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 七、效能监测指标 1. 首次响应准确率:目标>75%。 2. 多轮对话效率:问题解决平均轮次<3。 3. 复杂任务分解:支持 5 级子任务嵌套。 八、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植、文体杂交、学术口语化。 效果示例。 2. 领域穿透技术:行业黑话破解→“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 商业决策支持 九、场景化实战策略 1. 创意内容生成 2. 技术方案论证 十、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。 信息回溯:“请复述之前确认的三个设计原则”。 焦点重置:“回到最初讨论的供应链问题”。 2. 输出质量控制 问题类型:过度抽象、信息过载、风格偏移。 修正指令。 十一、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制”。 场景移植法:“假设在火星殖民地讨论该议题”。
2025-03-14
请给我本科生写毕业论文向AI发送的指令
以下是一些本科生写毕业论文时向 AI 发送的指令示例: 1. “根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 2. 请基于以下案例情况,给我推荐 5 个类似案例:某公司员工在公司内部网络中发布了一篇批评公司管理的文章,引起了公司高层的不满。公司以员工违反了公司的规章制度为由,将其解雇。员工认为公司的行为侵犯了他的权利,将公司告上法庭。 3. 【提炼的案例事实(也可以让 AI 先提炼总结)or 直接把案例直接发给 AI,让 AI 基于以上事实推荐类似案例】 4. 根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】
2025-03-12
写学术论文用哪一个 AI大模型比较好
在写学术论文时,以下 AI 大模型可供选择: 1. 智谱 AI 大模型开放平台:其 GLM 系列模型凭借强大的语义理解能力,能够快速总结论文内容、进行精准翻译。模型通用性强,能适应不同学科和复杂文本,提炼核心观点,为研究工作提速。在使用前,需将文献转换为可供模型解析的文本格式,可借助平台工具高效完成文件内容的提取。 2. 对于论文排版,有以下工具: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:广泛用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 通常是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2025-03-18
毕业论文降低ai率
在毕业论文写作中,若要降低 AI 率,以下是一些建议和相关的 AI 工具介绍: AI 工具方面: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,需注意不能过度依赖 AI 生成的内容,应保持自己的思考和创作,以降低论文的 AI 率。 需提醒的是,上述内容由 AI 大模型生成,请仔细甄别。
2025-03-17
ai写毕业论文
使用 AI 写毕业论文是一个具有争议性的话题,虽然 AI 技术可以提供一定的辅助,但不能完全依赖。以下是一些相关信息: 在论文写作的格式和模板方面: 有本科毕业设计模板、本科毕业论文模板、硕士研究生学位论文模板等,格式包括字体(如宋体)、字号(小四)、行距(1.5 倍)等,还可以自定义格式模板实现自动调整,也可通过学校教务系统查询。 在论文写作的辅助工具方面: 文献管理和搜索:Zotero 能自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 可检测抄袭。 同时,也有示例提到可以直接要求语言模型帮写论文,但需要注意这并非道德的使用方式。使用这些 AI 工具时,应结合自身写作风格和需求,选择合适的辅助工具,并确保论文的原创性。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-17
帮我生成一个本科的论文题目,专业是学前教育,要有数据分析
以下为您生成几个关于学前教育专业且包含数据分析的本科论文题目,供您参考: 1. 《基于数据分析的学前教育课程设置对幼儿发展的影响研究》 2. 《学前教育中幼儿游戏行为的数据分析与教育策略研究》 3. 《通过数据分析探究家庭环境对学前儿童心理健康的影响》 4. 《基于大数据分析的学前教育师资培训效果评估》 5. 《利用数据分析研究学前教育机构设施配备与幼儿学习效果的关系》
2025-03-16
可以将一篇论文变成ppt吗
可以将一篇论文变成 PPT。例如,可以把 Claude 的答案放到 Google Docs 中,再导入 Gamma app 来自动转成一份初始只有文字没有图片的 PPT,还能给 Gamma app 发送指令进行美化。 如果需要论文中的关键图表但无法直接获取,有以下建议: 1. 检查论文在线版本。有些期刊会发布数字版本,包含原文、数据、图表和附录等,可在论文首页或期刊网站上查找相关链接下载全文 PDF 并查找所需图表资料。 2. 联系论文作者。通过网络查找作者联系方式,说明对论文的高度兴趣,请求获取论文原文以查阅相关图表和数据信息。 3. 咨询研究数据库。大学和公共图书馆通常订阅包括各类期刊在内的研究文献数据库,可联系相关馆员请求帮助查阅和获取该研究文章,可能需要前往图书馆亲自查阅或支付少许费用获取电子资料。 此外,AI 工具如 Claude 和 Gamma.app 还能帮助快速寻找符合条件的论文、提取精炼论文中某部分信息、找到适合的 PPT 制作工具并教会使用。但也要注意,越来越多由 AI 生成的 PPT 可能存在内容与实际工作脱节的问题。
2025-03-16