Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfui怎么使用

Answer

以下是关于 ComfyUI 的使用方法:

  1. 模型放置:
    • t5xxl_fp16.safetensors:放在 ComfyUI/models/clip/目录下。
    • clip_l.safetensors:放在 ComfyUI/models/clip/目录下。
    • ae.safetensors:放在 ComfyUI/models/vae/目录下。
    • flux1-dev.safetensors:放在 ComfyUI/models/unet/目录下。
    • 理解方式:flux1-dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
  2. 图像形态学处理:
    • 支持的处理方式:erode 腐蚀(去除小噪点/分离相邻对象)、dilate 膨胀(填补小洞/连接临近对象)、open 开(先腐蚀后膨胀)、close 闭(先膨胀后腐蚀)、gradient 梯度(膨胀与腐蚀之差)、top_hat 顶帽(原图与开之差)、bottom_hat 底帽(原图与闭之差)。
    • 使用方法:
      • 更新 ComfyUI。
      • 右键 image/postprocessing/ImageMorphology。
      • 接上图像输入和输出即可。
  3. Canny ControlNet:
    • 使用方法:以 SC 文生图为基础,在 C 阶段加上常规的 CN 节点,CN 模型直接下载到/models/checkpoints 里。
    • 模型下载地址:https://huggingface.co/stabilityai/stable-cascade/tree/main/controlnet 。
    • 工作流分享地址:https://github.com/ZHO-ZHO-ZHO/ComfyUI-Workflows-ZHO 。
  4. 电脑硬件要求:
    • 系统:Windows7 以上。
    • 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。
    • 硬盘留有足够的空间,最低 100G 起步(包括模型)。
    • 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
Content generated by AI large model, please carefully verify (powered by aily)

References

工具教程:Flux

因为上次祐萌刚刚讲过了comfyUI的使用,我们就讲一下在comfyUI中如何使用Flux(在ForgeUI中同样可以使用,国内还可以去哩布哩布、阿里云等众多平台使用,有很多平台可以薅羊毛,这里介绍本地部署comfyUI)把这4个模型,放到对应的目录下就可以了。t5xxl_fp16.safetensors:放在ComfyUI/models/clip/目录下clip_l.safetensors:放在ComfyUI/models/clip/目录下ae.safetensors:放在ComfyUI/models/vae/目录下flux1-dev.safetensors:放在ComfyUI/models/unet/目录下[heading3]怎么记和理解呢?[content]flux1-dev.safetensors是底模,ae.safetensors是VAE,clip_l.safetensors和t5xxl_fp16.safetensors是关于文字语言编码,这么理解就行。

爆肝博主 ZHO

【Zho】最新版ComfyUI支持了一系列图像形态学处理:erode腐蚀(去除小噪点/分离相邻对象)dilate膨胀(填补小洞/连接临近对象)open开(先腐蚀后膨胀)close闭(先膨胀后腐蚀)gradient梯度(膨胀与腐蚀之差)top_hat顶帽(原图与开之差)bottom_hat底帽(原图与闭之差)使用方法:1)更新ComfyUI2)右键image/postprocessing/ImageMorphology3)接上图像输入和输出即可[heading2]3月6日Canny ControlNet[content]【Zho】终于来了!!!ComfyUI已经支持Stable Cascade的Canny ControlNet了!使用方法:以SC文生图为基础,在C阶段加上常规的CN节点就好了,CN模型还是直接下载到/models/checkpoints里SC Canny CN模型:https://huggingface.co/stabilityai/stable-cascade/tree/main/controlnet我的工作流会统一分享在:https://github.com/ZHO-ZHO-ZHO/ComfyUI-Workflows-ZHO

1、环境安装、ComfyUI本体安装 副本

本文主要介绍StableDiffusion的另一种UIComfyUI的实际操作方法,以及如何在ComfyUI中使用SDXL模型,希望通过本文能够降低大家对StableDiffusion ComfyUI的学习成本,更快速的体验到AIGC图像生成的魅力。[heading1]一、电脑硬件要求[content]1.系统:Windows7以上(就不要为难XP老师傅了)。2.显卡要求:NVDIA独立显卡且显存至少4G起步。3.硬盘留有足够的空间,最低100G起步(包括模型)。注:mac系统,AMD显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。

Others are asking
comfui 出现SUPIR_Upscale怎么办
当 ComfyUi 出现 SUPIR_Upscale 时,以下是相关信息: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码。此方法比传统的 VAE 解码和编码快很多,并且质量损失很小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。 具体流程包括:生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理从而修复成高分辨率图像)。此节点用于一种工作流程,初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散 unet 中进行低噪声扩散处理(高分辨率修复)。 UNet 是一种特别的神经网络结构,常用于图像处理,尤其是图像分割。其工作方式包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像把提取的特征重新组合成高分辨率的图像)、跳跃连接(在缩小和放大过程中保留细节信息使最终生成的图像更清晰),这种结构能在放大图像时保持细节和准确性。 ComfyUI 老照片修复 Flux Controlnet Upscale 中,关于 flux unet 的 weight_dtype: Flux 模型主要用于图像处理,特别是上采样。这类任务通常需要较高精度来保留图像细节。 fp8 格式包括 fp8_e4m3fn(4 位指数,3 位尾数,通常提供更好的精度)和 fp8_e5m2(5 位指数,2 位尾数,提供更大的数值范围但精度较低)。 图像处理通常更依赖于精确的小数值表示,现代 GPU 通常对 fp8_e4m3fn 格式有更好的优化支持。在没有特殊需求的情况下,图像处理模型通常倾向于选择提供更高精度的格式,对于 Flux 模型,特别是在进行图像上采样任务时,fp8_e4m3fn 可能是更好的选择,因为更高的精度有利于保留图像细节和纹理,图像处理通常不需要特别大的数值范围,fp8_e4m3fn 的精度优势更为重要,这种格式在现代 GPU 上可能有更好的性能表现。
2025-01-21
comfui SUPIR_Upscale怎么办
ComfyUi 的 SUPIR_Upscale 是一种通过神经网络对潜在空间进行放大的技术。以下是相关详细信息: 原理:通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码。此方法比传统的 VAE 解码和编码快很多,并且质量损失很小。 流程: 生成潜在表示:图像被模型压缩成潜在表示,生成一个低分辨率的图像。 放大潜在表示:利用神经网络对潜在表示进行放大。 生成高分辨率图像:将放大的潜在图像反馈到稳定扩散 UNet 中,进行低噪声扩散处理,从而修复成高分辨率图像。 相关节点:此节点旨在用于一种工作流程中,其中初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散 unet 中进行低噪声扩散处理(高分辨率修复)。 UNet 结构:UNet 是一种特别的神经网络结构,通常用于图像处理,尤其是图像分割。其工作方式包括编码部分逐步缩小图像提取重要特征,解码部分逐步放大图像并重新组合特征,以及通过跳跃连接在缩小和放大过程中保留细节信息,使最终生成的图像更清晰。 ComfyUI 老照片修复 Flux Controlnet Upscale 方面: 以前有高清放大的工作流,被用于淘宝老照片修复。现在新模型结合工作流,只需十几个基础节点就能实现更好效果。 参数调节:一般先确认放大倍数,再根据图片调整 controlNet 强度。 ControlnetUpscaler 放大模型:Flux.1dev ControlNet 是 Jasper 研究团队为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,通过特定代码加载管道,加载控制图像并进行图像处理。其训练方式采用合成复杂数据退化方案,结合图像噪声、模糊和 JPEG 压缩等多种方式对真实图像进行人工退化。 Flux Ultimator 细节增强:能增加小细节,让图像尽可能逼真,放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用效果好,结合时需将强度降低小于 0.5。 T5 Clip:若图片质量细节不够,选择 fp16 的版本。 图像的传递:controlNet 这里传递的应该是上传的原始图片,因为这个是 controlNet 而不是潜空间图像。 关于 flux unet 的 weight_dtype: Flux 模型主要用于图像处理,特别是上采样(upscaling),这类任务通常需要较高的精度来保留图像细节。 fp8 格式包括 fp8_e4m3fn(4 位指数,3 位尾数,通常提供更好的精度)和 fp8_e5m2(5 位指数,2 位尾数,提供更大的数值范围但精度较低)。 图像处理通常更依赖于精确的小数值表示,而不是极大或极小数值的表示能力,现代 GPU 通常对 fp8_e4m3fn 格式有更好的优化支持。 在没有特殊需求的情况下,对于 Flux 模型进行图像上采样任务时,fp8_e4m3fn 可能是更好的选择,因为其更高的精度有利于保留图像细节和纹理,且图像处理通常不需要特别大的数值范围,这种格式在现代 GPU 上可能有更好的性能表现。 插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 潜在表示(latent representation)是神经网络处理图像时生成的压缩版本,它包含了图像的主要特征信息。相比于直接处理高分辨率图像,处理潜在表示更快且资源消耗更少。
2025-01-21
想要使用AI软件对学生成绩进行分析,请问应该用什么提示词
以下是一些关于使用提示词对学生成绩进行分析的建议: 1. 明确分析目标:例如找出成绩优秀和较差的学生特点、分析成绩的趋势等。 2. 描述数据特点:包括成绩的科目、分数范围、数据量等。 3. 确定分析方法:如比较不同时间段的成绩、按照班级或年级进行分类分析等。 4. 强调重点关注内容:比如特定学科的成绩表现、成绩波动较大的学生等。 5. 注意提示词的准确性和清晰性,避免模糊或歧义的表述。 在实际编写提示词时,可以参考以下格式:“对的表现。” 同时,不同的 AI 工具可能对提示词的要求和处理方式有所不同,您可能需要根据具体工具的特点进行适当调整。
2025-03-17
Dify 怎么使用
Dify 有以下使用方式和相关信息: 云服务版本:可直接在官网 dify.ai 上注册账号使用。 部署社区版:开源且可商用,但不能作为多租户服务使用,对个人使用无限制。部署前提条件为 2 核 4G 云服务器一台(约 159 元),本地也可部署但较折腾。 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,并进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据需求选择。 集成至应用:将数据集集成到对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,优化知识库内容和索引方式,定期更新增加新内容。 Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具、支持广泛模型集成、提示词 IDE、全面的 RAG Pipeline 用于文档处理和检索,允许定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用性能。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,官方手册:https://docs.dify.ai/v/zhhans 。一般个人研究推荐单独使用,企业级落地项目推荐多种框架结合。
2025-03-17
适合客户端使用的 asr 模型有什么
以下是一些适合客户端使用的 ASR 模型: 1. Ollama: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. FishAudio 的 Fish Agent: 集成了自动语音识别(ASR)和文本到语音(TTS)技术,无需传统的语义编码器/解码器,即可实现语音到语音的直接转换。 模型经过 700,000 小时的多语言音频内容训练,支持包括英语、中文在内的多种语言,能够精准捕捉和生成环境音频信息。文本方面由 Qwen2.53B 处理。 相关链接: https://huggingface.co/fishaudio/fishagentv0.13b https://github.com/fishaudio/fishspeech 3. Gemini: Gemini Nano1 和 Gemini Pro 模型在各种 Benchmark 上的自动语音识别(ASR)任务中表现出色,如在 FLEURS、多语言 Librispeech 以及语音翻译任务 CoVoST 2 等测试集中。 相关链接:未提及。
2025-03-17
适合客户端使用的 tts 模型有什么
以下是一些适合客户端使用的 TTS 模型: 1. Fish Speech:语音处理接近人类水平,约十五万小时三语数据,对中文支持完美。开发者为 fishaudio,具有亿级参数,高效轻量,可在个人设备上运行和微调,适合作为私人语音助手。详细介绍及更多演示:https://xiaohu.ai/p/10779 ,GitHub:https://github.com/fishaudio/fishspeech 。 2. GPTSoVITS:只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。5 秒数据就能模仿,1 分钟的声音数据就能训练出高质量的 TTS 模型,完美克隆声音。支持零样本 TTS、少量样本训练、跨语言支持、易于使用的界面等。GitHub: 。
2025-03-17
我是美区Tiktok shop 的卖家,希望使用AI生成带货短视频
以下是使用 AI 生成美区 TikTok Shop 带货短视频的步骤: 一、用 ChatGPT 生成短视频选题文案 表明身份,描述需求并提出回答要求,以美妆行业为例展开。 二、用 ChatGPT 生产短视频文案 将需求与框架结合,让 ChatGPT 为您生成短视频文案。 三、生成虚拟数字人短视频 1. 打开网站(需科学上网):https://studio.did.com/editor 2. 在右侧文字框输入从 ChatGPT 产生的内容,选择想要的头像。 3. 选择不同的国家和声音。 4. 内容和人像选择好后,点击右上角的“Create Video”,等待生成。 四、虚拟数字人结合产品做视频 1. 添加产品/介绍背景 若有自己的视频/图片素材可直接使用,若无,可根据搜索添加。 2. 扣像结合背景 在剪映中把数字人扣下来,导入视频,点击画面选择抠像,点击智能扣像,调整到合适的大小和位置。 3. 添加字幕和音乐 智能识别字幕。 可搜索添加音乐或手动添加喜欢的音乐。 这样就可以根据您的需求结合图片生成所需的视频,用于带货或讲解产品,也可应用于直播(直播可能收费,短视频可通过购买邮箱注册使用免费时长或直接购买会员版)。
2025-03-17
我需要搭建一个每个人都能使用的知识库
要搭建一个每个人都能使用的知识库,可以考虑使用 GPT 并借助 embeddings 技术。以下是相关步骤和原理: 1. 文本处理:将大文本拆分成若干小文本块(chunk)。 2. 向量转换:通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块,作为问答的知识库。 3. 问题处理:当用户提出问题时,先将问题通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量进行比对,查找距离最小的几个向量,提取对应的文本块,并与原有问题组合成新的 prompt 发送给 GPT API。 4. 容量限制:GPT3.5 一次交互支持的 Token 数量有限,embedding API 是解决处理大量领域知识的方案。 5. 理解 embeddings:embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。 例如,对于一篇万字长文,拆分成的 chunks 包含:文本块 1:本文作者:越山。xxxx。文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。文本块 3:《反脆弱》作者塔勒布xxxx。文本块 4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。如果提问是“此文作者是谁?”,通过比较 embeddings 向量,可以直观地看出文本块 1 跟这个问题的关联度最高,文本块 3 次之。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”这样大语言模型大概率能回答上这个问题。
2025-03-16