Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui连接blender的教程

Answer

以下是 ComfyUI 连接 Blender 的教程:

首先,安装下载网盘里的两个文件。先安装稳定版 Blender(这是主程序,解压即用。如果已经有 Blender 的朋友可以跳过这一步)。有 Steam 平台的可以去 Steam 上下载 Blender,软件会自动更新,很方便。

接下来打开软件,安装无限圣杯的插件。进入“偏好设置”——插件——选择“安装”,找到“无限圣杯节点工具”里面的压缩包,不用解压,直接选择压缩包进行安装。安装好之后,打上勾,就可以开启无限圣杯了。

接着看插件下方的 ComfyUI 路径这一栏,将它更改为我们电脑中的 ComfyUI 的地址。然后选择一个适合自己的显存模式:8G 以上选高显存;6G 选中显存;4G 选低显存。安装完成,重启即可。

无限圣杯的使用:打开软件,编辑器类型中会出现“ComfyUI Node”。点击进入 ComfyUI 界面,先点击上方的“新建”按钮,然后展开右侧的 N 面板可以看到无限圣杯的界面。打开节点树的列表,可以看到文生图、图生图以及 ControlNet 等常见工作流。选择文生图,打开会发现还有一些更细化的预设工作流选项。再看看 ControlNet 中的工作流预设。

还有一些根据插件整理的工作流,比如随便选择一个“文生图”中的“基础+自定 VAE”,选好之后,点击“替换节点树”。界面中会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。

Content generated by AI large model, please carefully verify (powered by aily)

References

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

那么今天,我们就来看一下如何在blender中实现comfyUI的使用,以及无限圣杯有什么优势。#安装下载网盘里的两个文件,先安装稳定版blender,这个是主程序,解压即用,如果已经有blender的朋友可以跳过这一步。另外说一句,有steam平台的可以去steam上下载blender,我就是在这里装的,软件会自动更新,很方便。接下来打开软件,安装无限圣杯的插件。进入“偏好设置”——插件——选择“安装”。找到“无限圣杯节点工具”里面的压缩包,不用解压,直接选择压缩包进行安装。安装好之后,打上勾,就可以开启无限圣杯了。接着看插件下方的ComfyUI路径这一栏,将它更改为我们电脑中的comfyUI的地址,我的是“E:\ComfyUI_windows_portable\ComfyUI”。然后选择一个适合自己的显存模式:8G以上都是高显存;6G选中显存;4G选低显存。安装完成,重启就可以了。#无限圣杯的使用打开软件,编辑器类型中就出现了“ComfyUI Node”。点击进入comfyUI界面,先点击上方的“新建”按钮,然后展开右侧的N面板可以看到无限圣杯的界面了。打开节点树的列表,可以看到我们熟悉的文生图、图生图以及controlnet等常见工作流。我们选择文生图,打开发现还有一些更细化的预设工作流选项。再看看controlnet中的工作流预设。

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-09-05 19:00原文网址:https://mp.weixin.qq.com/s/vdm9L_xsZc8d3ZZj7CrLdw在上一期介绍了ComfyUI的本地部署之后,很多小伙伴发现界面还是英文的,这样使用起来属实不太友好。而且,每一个流程都要自己搭建,操作起来很麻烦。但没关系,这个问题是可以解决的。了解过Blender的朋友一定都知道B站UP主“只剩一瓶辣椒酱”,他在blender界就是和秋叶大佬一样的存在,属于祖师级别的人物。最近,他和幻之境开发小组联合开发的一款基于STABLE DIFFUISON ComfyUI核心的Blender AI插件,将他们整合到了一起,名字叫做——无限圣杯。鉴于有的朋友还不知道blender是什么,我先在这里大致普及一下,因为我这个公众号也写了一年多的blender教程了,对这个软件还是比较熟悉的。它和SD一样,是一款免费开源的三维制作软件,曾经作为C4D的平替被大家所熟知。而一款开源软件,那就意味着它极高的自由度,可以将很多的功能包容进来,blender也正是以一款软件就能建立完整工作流而立足的。ComfyUI的界面很简单,主要是节点操作,而在一款三维软件当中,节点工作流可是家常便饭了。材质节点编辑器、纹理节点编辑器、几何节点编辑器等等,都是经常会用到的,所以Blender和ComfyUI从工作流程上就是天然适配。想不到研究了blender这么久,终于等到了AI绘画和blender结合的一天,不得不感叹一句:少年啊,这盛世如你所愿!

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

还有一些根据插件整理的工作流,可谓是相当丰富了。我们就先随便选择一个“文生图”中的“基础+自定VAE”吧。选好之后,点击“替换节点树”。界面中就出现了已经连接好的工作流节点(如果没看到,就按一下home键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有我们在webUI中都已经熟悉的参数,而且全都是中文面板。打开模型节点,可以看到我们webUI中的模型全部都在。这个地方不知道怎么操作的朋友,可以看我的上一篇[【ComfyUI】本地部署ComfyUI上手指南,我就喜欢连连看](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487895&idx=1&sn=aa21eede16dfe4bde7e0e93e353f7357&chksm=c2514753f526ce451175f654a93f48b526fc6de3e3b1564b218db41f7e3f99df5a84bb887043&scene=21#wechat_redirect)。我们这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒你是否启用ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片了。点击这里就可以打开后台,看到出图时间,用时为2.15s。

Others are asking
生成blender 3d文件的ai
目前,已经有许多AI工具可以用于生成Blender 3D文件。这些工具可以帮助您快速创建各种3D模型、场景和动画,而无需手动建模。以下是一些流行的AI生成Blender 3D文件的工具: Dream by WOMBO: Dream by WOMBO是一个基于文本到图像的AI平台,可以根据您的文字描述生成3D模型。您可以输入任何您想生成的3D模型的描述,Dream by WOMBO会将它转换为一个Blender 3D文件。 Artbreeder: Artbreeder是一个AI平台,可以用于创建和混合各种创意内容,包括3D模型。您可以使用Artbreeder提供的现有模型,也可以上传自己的模型进行混合。Artbreeder会生成新的3D模型,您可以将其导出为Blender 3D文件。 GauGAN2: GauGAN2是NVIDIA开发的AI模型,可以将草图或照片转换为逼真的3D场景。您可以使用GauGAN2提供的工具绘制草图或上传照片,GauGAN2会将它转换为一个Blender 3D文件。 Stable Diffusion: Stable Diffusion是一个开源的AI文本到图像模型,可以根据您的文字描述生成3D模型。您可以使用Stable Diffusion提供的API或GUI来生成3D模型,并将它们导出为Blender 3D文件。 Midjourney: Midjourney是一个AI绘画平台,可以根据您的文字描述生成图像和3D模型。您可以输入任何您想生成的3D模型的描述,Midjourney会将它转换为一个Blender 3D文件。 这些只是一些流行的AI生成Blender 3D文件的工具。随着AI技术的不断发展,将会有越来越多的工具可以用于生成3D内容。 以下是一些使用AI生成Blender 3D文件的提示: 使用具体的关键词: 使用具体的关键词可以帮助AI工具生成更准确的3D模型。例如,如果您想生成一个猫的3D模型,您可以使用以下关键词: 猫 3D模型 毛茸茸的 四条腿 尾巴 使用参考图像: 您可以向AI工具提供参考图像,帮助它理解您的风格和要求。例如,如果您想生成一个类似于某只猫的3D模型,您可以向AI工具提供该猫的图片。 调整AI工具的参数: 许多AI工具都提供了各种参数,您可以调整这些参数来控制生成结果。例如,您可以调整模型的分辨率、细节程度和风格。 使用多个AI工具: 您可以使用多个AI工具来生成3D模型,然后将它们组合在一起。例如,您可以使用Dream by WOMBO生成一个猫的3D模型,然后使用Artbreeder将它与另一只猫的3D模型混合。 希望以上信息对您有所帮助。如果您还有其他问题,请随时提出。
2024-05-13
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
comfyui工作流搭建基础
以下是 ComfyUI 工作流搭建的基础步骤: 1. 准备加载大模型的节点(load 节点):在工作区鼠标右键点击,选择“Add Node”,然后依次选择“loaders”和“Load Checkpoint”,接着选择对应的模型,点击“Ckpt_name”下拉选择对应的模型。 2. 加载 Conditioning(条件):在工作区鼠标右键点击,选择“Add Node”,然后选择“Conditioning”,再选择“CLIP TEXT Encode”。这里需要输入正向和反向提示词,相同节点可使用快捷键 Ctrl+C 和 Ctrl+V 复制粘贴。 3. 添加采样器:这部分和 WEB_UI 的设置类似,包括采样器、迭代步数、CFG 等。需要注意的是,seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。 4. 加载 Latent:可以设置图片的宽、高和批次,设置方式与 WEB_UI 相同。 5. 加载 VAE:操作与 WEB_UI 加载 VAE 相同。 6. 加载保存图片的节点。 7. 串联节点:节点分为起始节点、最终输出节点和过程执行节点。首先,checkpoint 加载器中模型选择好可直接使用,CLIP 对应链接需要的两个条件(正向提示词/负向提示词),VAE 直接连接对应的 VAE。然后将正向提示词、负向提示词链接到对应的采样器节点,latent 直接链接空 Latent。串联完毕后即得到最简单的 ComfyUI 工作流。 此外,ComfyUI 共学快闪的飞书学习群中有众多关于 ComfyUI 的学习内容,如王蓉的基础搭建和转绘、唯有葵花向日晴的基础教程、工作流开发和实际应用场景等。
2025-03-15
在使用comfyUI制作ai视频时,如何减小频闪
很抱歉,您提供的内容中没有关于在使用 ComfyUI 制作 AI 视频时如何减小频闪的相关信息。建议您检查 ComfyUI 的设置选项,看是否有与视频帧率、显示刷新率相关的设置,适当调整这些参数可能有助于减小频闪。同时,确保您的硬件设备(如显卡、显示器)性能良好且驱动程序为最新版本,也可能对解决频闪问题有所帮助。
2025-03-15
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
comfyui教程
以下是一些关于 ComfyUI 的学习教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中 KSampler 部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:值一般设置在 6 8 之间较好。 5. sampler_name:可设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2025-03-13
我要学ComfyUI,我们有哪些学习资源?
以下是一些学习 ComfyUI 的资源: 1. 网站资源: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 2. 飞书学习群资源: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 Huolarr AI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅。视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 Stuart 风格迁移 红泥小火炉 基础课程 大雨 换背景图 Anna 娜娜° 图生 3D 🎵柒小毓 基础课程 Ting 基础课程 郑个小目标 针对于某个插件的深入讲解 波风若川 报错解决 chen 工作流的研发 朱敏🎈 基础课程,工作流 王卓圻 基础课程 南城 基础课程 Zero one 工作流开发 梓阳 基础课程 蓝牙耍手机 工作流搭建思路 皮皮 Peter 工作流的设计规划和调优逻辑 Jāy Līn 锦鲤 工作流搭建逻辑和原理 K 如何本地部署基础生图参数选择工作流的基本应用 Adai 基础课程 镜生 视频 x 基础教程 梦飞 基础教程 🙋🙋🙋 各个节点讲解和参数含义 戴志伟 基础课程 雪娴_CC 基础课程,从安装开始 Joey 实时转绘工作流 倪星宇 22 换脸换背景实践落地 早点睡觉 CT 优秀案例 三思 基础教程 晓珍 Mr.大狐🏝 报错解决 Duo 多吉~ 基础课程 陈旭 常用节点讲解和简单的节点制作 长风归庭 基础教程+工作流创建 ヘヘ阿甘 采样器原理与优化 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-12
上手coze的路径,整理一个教程的列表
以下是上手 Coze 的路径及相关教程列表: 1. 历史活动教程: 5 月 7 号():大聪明分享|主题:Agent 的前世今生,每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么。流程安排:20:00@🌈AJ 主持开场,20:00 21:00 大聪明分享,21:00 21:30 关于 Coze 随便聊聊。 5 月 8 号():大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze。流程安排:20:00 21:20 大圣分享。 5 月 9 号():艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例,线上答疑。流程安排:20:00 21:00 艾木分享,21:00 21:30 线上答疑。 5 月 10 号():罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书。流程安排:20:00 21:00 罗文分享。 5 月 11 号():Itao 分享|主题:和 AI 成为搭子,线上答疑。流程安排:20:00 21:00:itao 分享,21:00 21:30 线上答疑。 2. 基础教程: 3. 大圣的胎教级教程中的 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。 字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可以正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。
2025-03-16
trae 使用教程
以下是 Trae 的保姆级使用教程: 1. 什么是 Trae: Trae 是字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,使用自然语言对话就能实现代码编写。 2. Trae 的功能: 传统 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等。 智能问答,可在编写代码时随时与 AI 助手对话,获得代码解释、注释和错误修复等帮助。 实时代码建议,能理解当前代码并在编辑器中实时提供建议,提升编程效率。 代码片段生成,通过自然语言描述需求生成相应代码片段,甚至能编写项目级或跨文件代码。 从 0 到 1 开发项目,告诉 AI 助手想开发的程序,其将提供相关代码或自动创建所需文件。 3. 下载 Trae: 官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。 4. 使用方法: 安装:下载完成后按界面提示一步步安装。 登录:安装完成后点击右侧登录按钮,程序会自动打开网页提示登录,无账号需先注册。登录完可能会出现“App Unavailable”,此时需要开启科学上网。网页登录成功后可关闭科学上网,再点击中间大按钮。 进入客户端后,查看对话框右下角,有三种大模型可选:Claude3.5Sonnet、Claude3.7Sonnet、GPT4o 。 Trae 提供两种模式:Chat 模式,根据描述进行代码生成、解释、分析问题或解决问题;Builder 模式,帮助从 0 开发完整项目,对代码文件的任何更改都会自动保存。 5. 使用案例: 生成一个贪吃蛇游戏:打开 Builder 模式,输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后 Trae 开始思考和代码编写,期间需手动接入进行文件审查并点击“全部接受”。代码生成完成后,Trae 自动运行命令启动页面,点击运行,在 Webview 中可看到游戏效果,试玩基本无 Bug。Trae 还进行了工作总结,说明了游戏的特性、主要功能和游戏界面。 生成一个任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”,可直接看效果。 根据 UI 设计图自动生成项目代码:从站酷上找一张设计图,输入提示“使用 html 技术实现如图大屏页面”,虽页面不完美但可让 Trae 调整。 从实际体验来看,Trae 表现可圈可点,具有高效代码生成能力、多技术栈支持和动态调整潜力。
2025-03-16
初学者教程
以下为您提供一些适合初学者的 AI 教程资源: Blender 相关: 新手免费入门教程:https://flowus.cn/share/bf6780f53c0a43999e6cdf4a9f48d52b Blender 插件的安装方法和汉化、包括疑难杂症解决:https://flowus.cn/share/79f8f60ac2e94d669a56572d2cda5641 Up B 站空间:https://space.bilibili.com/206992617?spm_id_from=333.1007.0.0 关于 Blender 找工作问题:https://flowus.cn/share/7000d5e84ca94f0cb493406b08c29e3f Blender 插件寻找与下载:https://flowus.cn/share/42a2af8dbaf04d1db309fe33dcb061d2 Blender 资产、贴图、等等免费网站:https://flowus.cn/share/606da95d9130451f96000fe3789e3a42 提升审美网站:https://flowus.cn/share/0f6bad6a46034b8082a27a8c69bb1caa 面向 AI 应用的同学: 微软的 AI 初学者课程:https://microsoft.github.io/AIForBeginners/ AI for every one(吴恩达教程):https://www.bilibili.com/video/BV1yL411u7q6 大语言模型原理介绍视频(李宏毅):https://www.bilibili.com/video/BV1TD4y137mP/ 谷歌生成式 AI 课程:目录:https://ywh1bkansf.feishu.cn/wiki/DTm0way7QiKyHckMXsjc00kIn6e ChatGPT 入门:目录:https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc 微信机器人共学教程第一天教程 COW 部署的配置环境: 刚才在这里保存的“外网面板地址”,点击打开。(有小伙伴反馈,命令输出的地址是 login 结尾的,点击打不开。那您只需要把 login 改成 http://xxx.xxx.xx.xxx:8888/tencentcloud 就可以了) 输入账号密码,即上图中的 username、password 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 首次会有个推荐安装,只安装第一个即可。其他的取消勾选。
2025-03-16
Trae 能用来做什么?有教程吗
Trae 是一款与 AI 深度集成,提供智能问答、代码自动补全以及基于 Agent 的 AI 自动编程能力的 IDE 工具,对中文用户更加友好。其特点和用途包括: 1. Trae Windows 版本已于 2 月 17 日 9:00 全量上线,即日起全系统可用。 2. 标配 Claude3.5sonnet 模型免费不限量,而竞品工具同一模型每月 140 大洋且限量使用 500 次。 3. 编辑器所有功能原生支持中文,上手门槛大大降低。 4. 相比 IDE 插件类的 AI 代码助手,Trae 这样 AI 原生的 IDE 有两个跨越式的突破: 补全不局限于向后追加,而是可以删除代码,多行全方位的自动补全。 具备 Agent 的能力,无须人工干预的情况下,可以完成代码生成、代码调试、程序运行等一系列的工作。 使用方面,例如: 1. 生成一个任务清单应用,在输入框中输入相关描述即可。 2. 根据 UI 设计图自动生成项目代码,可对生成效果进行调整。 从实际体验来看,Trae 高效的代码生成能力,对多技术栈的支持以及动态调整的潜力表现可圈可点。
2025-03-14
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
ai 绘图教程
以下是为您提供的 AI 绘图教程: 一、前言 如果您在工作中需要大量图片,又不想为图片付费或担心版权问题,AI 生图是高效的解决办法。人像、动物、自然风景或人造景观的图都能用 AI 完成。但主流工具如 midjourney(MJ)付费成本高,stable diffusion(SD)硬件门槛不低。不过,还有像这样的免费在线 SD 工具网站。本教程旨在解决入门玩家不会用的问题,让您在半个小时内就能自由上手创作绘图。 二、教程示例 1. 线稿上色 Midjourney + Stable Diffusion 在学习 AI 绘画时,发现其可提高出图质量和效率。例如用 midjourney 生成线稿,PS 修正,再用 controlnet 控制,stable diffusion 上色,多套 AI 组合拳可快速生成惊艳的图。 线稿产出:mj 关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive PS 手动重绘错误的地方:有些图出来没有阴影容易飘,可以自己画一个出来。 2. SD 新手:视频教程 强烈推荐从 0 入门的 AI 绘画教程系列章节教学视频: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,您的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教您玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 三、注意事项 本教程适用于入门玩家,让读者看完就能自己作图玩或者应用到职场。如果半个小时不足以让您理解工具如何使用,问题在我,您可以通过评论区或加微信 designurlife1st(记得备注来意:ai 绘图交流)联系我。教程内容会持续更新,欢迎关注和催更。 如果您是大佬,愿意看的话,帮忙挑挑文章里面是否有错误或者不严谨的地方。如果我写得不清晰,可以评论区联系我。
2025-03-13
GPT为什么连接不上网站
GPT 连接不上网站可能有以下原因: 1. 网络问题:由于网络限制或不稳定,导致在国内的使用率较小。 2. 安全风险:连接到其他系统(如邮箱或购物网站)可能带来更高的安全风险,从而影响连接。 如果在 GPT 上迭代完成的提示词,可以考虑适配国内的优秀大模型。目前只有 Plus 用户才可以使用 GPT,这在一定程度上限制了其使用范围。关于 GPT 的创建方式,包括以下步骤: 1. 点击 Explore。 2. 点击 Create a GPT 进入配置页面。 3. 进入自定义 GPT 配置界面。 4. 默认进入 Create 页面,选择 Configure 进入配置页面,其中有添加图像、Name、Instructions、Conversation starters、Knowledge、Capabilities、Actions 等栏位的详细设置。 5. 上传图片,如做个人 IP 建议上传个人 Logo。 6. 填写相关信息。 7. 填写完信息自动保存,开始试用。 8. 上传图片开始分析。 9. 经过多次测试,达到满意程度后,在右上角点击 Save 进行发布,发布时可选择 Only me(只有自己可以使用)、Only people with a link(通过分析的链接可以访问)、Public(所有人都可以访问,但需要开启个人名称以及绑定公共域名)。
2025-03-15
我想开发铁路调车作业岗位的制动员、连接员和调车长的专业技能等级考级试题库。我应该利用何种AI资源来辅助我开发呢?
目前在开发铁路调车作业岗位相关的专业技能等级考级试题库方面,可利用的 AI 资源相对有限。但您可以考虑以下几种方式: 1. 利用自然语言处理模型,如 ChatGPT 等,辅助生成一些基础的题目框架和内容描述,然后您再根据实际需求进行修改和完善。 2. 借助一些智能写作工具,帮助您优化题目表述,提高题目质量。 3. 运用在线的知识图谱和数据库,获取与铁路调车作业相关的专业知识和标准,为试题库的内容提供准确依据。 需要注意的是,AI 生成的内容仅供参考,最终的试题库仍需要您依据专业标准和实际工作要求进行严格的审核和把关。
2025-03-05
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
comfyui无法连接服务器
ComfyUI 无法连接服务器可能有以下原因和解决办法: 1. 网络问题导致无法从 GitHub 下载资源: 可以使用国内镜像,参考文档中的说明。 直接从 GitHub 网页下载资源,然后放到对应的文件路径。 2. 终端连接不上 GitHub 可能是因为网络未做到终端 FanQiang,需要配置好代理。具体端口要根据自己的 FanQiang 服务来看,最好把这个配置到默认的终端启动项里边:export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890 。或者考虑使用第三方镜像站下载,如 TUNA()。 此外,安装 ComfyUI 还有以下电脑硬件要求: 1. 系统:Windows7 以上(不建议使用 XP 系统)。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2024-11-30
连接外部知识库
以下是关于连接外部知识库的相关内容: 创建并使用知识库: 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量、最小匹配度和调用方式。配置项说明:最大召回数量指 Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多;最小匹配度指 Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回,若未达到则不会被召回;调用方式包括自动调用(每轮对话将自动从所有关联的知识库中匹配数据并召回)和按需调用(需在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据)。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 扣子知识库介绍: 功能概述:扣子的知识库功能支持上传外部数据(例如本地文件、实时在线数据),通过向量搜索来检索最相关的内容以回答用户的问题。扣子提供了简单易用的方式来存储和管理外部数据,让 Bot 可以与指定的数据进行交互。将数据上传到扣子知识库后,扣子会自动将文档分割成一个个内容片段进行存储,并通过向量搜索来检索最相关的内容来回答用户问题。 应用场景:扣子支持上传文本内容和结构化的表格数据,可满足不同的使用场景,例如语料补充、客服场景、垂直场景等。 AI Agent 系列:Brain 模块探究: 外置知识是由外部数据库提供,能够进行动态更新和调整。外置知识通常涉及多种数据存储和组织方式,包括向量数据库(优化了向量检索操作,常用于处理和索引非结构化数据,如图像和文本)、关系型数据库(通过表格形式存储结构化数据,支持复杂的查询,适用于事务性数据存储)、知识图谱(以图的形式组织数据,强调实体之间的关系,适合于复杂的语义分析和知识推理)。在实际应用中,外置知识的集成和管理常常采用 RAG(RetrievalAugmented Generation)架构,它是一种结合了检索和生成的模型,通过检索外部知识源来增强模型的生成能力。
2024-10-31