以下为一些常见的模型:
以下模型,以便用户使用我们多元化的产品。|模型|介绍|代码链接|模型下载||-|-|-|-||WebGLM-10B|利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。|[WebGLM](https://github.com/THUDM/WebGLM)|[Huggingface](https://huggingface.co/THUDM/WebGLM)||WebGLM-2B|||[Huggingface](https://huggingface.co/THUDM/WebGLM-2B)||MathGLM-2B|在训练数据充足的情况下,20亿参数的MathGLM模型能够准确地执行多位算术运算,准确率几乎可以达到100%,其结果显著超越最强大语言模型GPT-4在相同测试数据上18.84%的准确率。|[MathGLM](https://github.com/THUDM/MathGLM)|[THU-Cloud](https://cloud.tsinghua.edu.cn/d/cf429216289948d889a6/)||MathGLM-500M|||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/c80046ec7e234be4831b/)||MathGLM-100M|||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/a6ca369a212c4df08359/)||MathGLM-10M|||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/16a914d6db2a4b8f80f5/)||MathGLM-Large|采用GLM的不同变体作为骨干来训练MathGLM,包括具有335M参数的GLM-large和GLM-10B。此外,还使用ChatGLM-6B和ChatGLM2-6B作为基座模型来训练MathGLM。这些骨干模型赋予MathGLM基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/3d138deaf93441b196fb/)|
OpenAI API由具有不同功能和价位的多种模型提供支持。您还可以通过[微调(fine-tuning)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf),针对您的特定用例对我们的原始基本模型进行有限的定制。|模型|描述||-|-||[GPT-4](https://platform.openai.com/docs/models/gpt-4)Beta|一组改进GPT-3.5的模型,可以理解和生成自然语言或代码||[GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5)|一组改进GPT-3的模型,可以理解并生成自然语言或代码||[DALL·E](https://platform.openai.com/docs/models/dall-e)Beta|可以在给定自然语言提示的情况下生成和编辑图像的模型||[Whisper](https://platform.openai.com/docs/models/whisper)Beta|可以将音频转换为文本的模型||[Embeddings](https://platform.openai.com/docs/models/embeddings)|一组可以将文本转换为数字形式的模型||[Codex](https://platform.openai.com/docs/models/codex)Limited Beta|一组可以理解和生成代码的模型,包括将自然语言转换为代码||[Moderation](https://platform.openai.com/docs/models/moderation)|可以检测文本是否敏感或不安全的微调模型||[GPT-3](https://platform.openai.com/docs/models/gpt-3)|一组可以理解和生成自然语言的模型|
5种尺寸的预训练和指令调整模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B;(Qwen2-57B-A14B这个模型可以重点看看除英语和中文外,还接受过另外27种语言的数据训练;在大量基准评估中表现出最先进的性能;在大量基准评估中获得SOTA性能。代码和数学性能显著提高,全面超越llama3增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。HF最新榜第一72B和7B可处理128k上下文57B-A14B可处理64k上下文0.5B和1.5B可处理32k上下文相比2月推出的通义千问Qwen1.5,Qwen2实现了整体性能的代际飞跃。在权威模型测评榜单OpenCompass中,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型。刚刚开源的Qwen2-72B,整体性能相比Qwen1.5-110B又取得了大幅提升。(图说:在上海人工智能实验室推出的OpenCompass大模型测评榜单上,此前开源的Qwen1.5-110B已领先于文心4.0等一众中国闭源模型)通义千问Qwen2系列模型大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。在MMLU、GPQA、HumanEval、GSM8K、BBH、MT-Bench、Arena Hard、LiveCodeBench等国际权威测评中,Qwen2-72B获十几项世界冠军,超过美国的Llama3。(图说:Qwen2-72B在十多个权威测评中获得冠军,超过美国的Llama3-70B模型)