Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

测试集

Answer

以下是关于测试集的相关信息:

  • Meta 开源视频生成模型的测试集包括 Movie Gen Video Bench 和 Audio Bench。Movie Gen Video Bench 是目前规模最大、最全面的视频生成评估基准,包含 1000 多个提示词,涵盖多种概念并有不同运动幅度的测试。Movie Gen Audio Bench 用于评估视频音效生成及视频配音能力,包含 527 个视频及相应提示。
  • 2023 年度中文大模型基准测评采用多维度、多视角的综合性测评方案,由多轮开放问题 SuperCLUE-OPEN 和三大能力客观题 SuperCLUE-OPT 两部分测评结果组成。评测集共 4273 题,其中 1060 道多轮简答题(OPEN),3213 道客观选择题(OPT)。测评采用待评估模型与基准模型对比,由超级模型评判,计算胜和率作为 OPEN 得分,最终 OPEN 分=0.7OPEN 分+0.3OPT 分,并经过人工校验。
  • 在嵌入(Embeddings)相关内容中,通过对用户和产品的所有评论进行平均获得嵌入,并在单独的测试集上评估其有用性,发现甚至在用户收到产品之前,就可以比随机预测更好地预测用户是否喜欢该产品。此外,嵌入在聚类和文本搜索任务中也有应用。
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

🫧宝玉日报「10月18日」✨✨✨✨✨✨✨✨1⃣️🎬Meta开源视频生成模型的测试集:Movie Gen Video Bench和Audio BenchMovie Gen Video Bench:目前规模最大、最全面的视频生成评估基准,包含1000多个提示词,涵盖人类活动、动物、自然景象、物理现象等概念,并有高、中、低运动幅度的测试。Movie Gen Audio Bench:评估视频音效生成及视频配音能力,包含527个视频及相应的音效和音乐提示。🔗[https://x.com/op7418/status/1847121108874809381](https://x.com/op7418/status/1847121108874809381)2⃣️📝OpenAI Canvas新增历史版本对比功能基于服务端实现,可以查看项目的历史版本并进行对比,方便追踪和管理内容的变化。🔗[https://x.com/OpenAI/status/1847016089202610235](https://x.com/OpenAI/status/1847016089202610235)🔗[https://x.com/dotey/status/1847117889641292114](https://x.com/dotey/status/1847117889641292114)3⃣️🎙️OpenAI发布gpt-4o-audio-preview模型,支持异步语音交互

2023年度中文大模型基准测评报告.pdf

对大模型研发机构及应用开发者,为优化模型和场景应用提供了相对全面的视角。测评方法持续扩充C L U E测评组OPEN在一个确定的评估标准指导下,OPEN基准使用超级模型作为评判官,使用一个待评估模型与一个基准模型进行对比,让超级模型选出A模型好,B模型好,或平局。进而计算胜和率作为OPEN得分。为更真实反应大模型能力,本次测评采用多维度、多视角的综合性测评方案,由多轮开放问题SuperCLUE-OPEN和三大能力客观题SuperCLUE-OPT两部分测评结果组成。评测集共4273题,其中1060道多轮简答题(OPEN),3213道客观选择题(OPT),以下为评测集与测评方法简述。评测反馈10万+题库被测模型A(如文心一言)VS多轮基线模型B(如GPT3.5)SuperCLUE总分不重复抽样5000原始评测集裁判模型(如GPT4-Turbo)胜(3分)、和(1分)、负(0分)OPEN分=胜和率=0.7*OPEN分+0.3*OPT分人工校验4273道评测题OPT

嵌入(Embeddings)

[User_and_product_embeddings.ipynb](https://github.com/openai/openai-cookbook/blob/main/examples/User_and_product_embeddings.ipynb)我们可以通过对他们的所有评论进行平均来获得用户嵌入。同样,我们可以通过对有关该产品的所有评论进行平均来获得产品嵌入。为了展示这种方法的实用性,我们使用50k评论的子集来覆盖每个用户和每个产品的更多评论。我们在单独的测试集上评估这些嵌入的有用性,我们将用户和产品嵌入的相似性绘制为评分的函数。有趣的是,基于这种方法,甚至在用户收到产品之前,我们就可以比随机预测更好地预测他们是否喜欢该产品。[heading3]聚类[content][Clustering.ipynb](https://github.com/openai/openai-cookbook/blob/main/examples/Clustering.ipynb)聚类是理解大量文本数据的一种方式。嵌入对于这项任务很有用,因为它们提供了每个文本的语义上有意义的向量表示。因此,以一种无监督的方式,聚类将揭示我们数据集中隐藏的分组。在这个例子中,我们发现了四个不同的集群:一个专注于狗食,一个专注于负面评论,两个专注于正面评论。[heading3]使用嵌入的文本搜索[content][Semantic_text_search_using_embeddings.ipynb](https://github.com/openai/openai-cookbook/blob/main/examples/Semantic_text_search_using_embeddings.ipynb)为了检索最相关的文档,我们使用查询的嵌入向量与每个文档之间的余弦相似度,并返回得分最高的文档。

Others are asking
什么样的数据集适合测试大语言模型?
以下是一些适合测试大语言模型的数据集: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 用于评估大语言模型的框架和基准有: GAOKAOBench:地址为,是以中国高考题目为数据集,测评大模型语言理解能力、逻辑推理能力的测评框架,收集了 2010 2022 年全国高考卷的题目,包括 1781 道客观题和 1030 道主观题。 AGIEval:地址为,是由微软发布的新型基准测试,选取 20 种面向普通人类考生的官方、公开、高标准往常和资格考试,包括普通大学入学考试(中国高考和美国 SAT 考试)、法学入学考试、数学竞赛、律师资格考试、国家公务员考试等。 Xiezhi:地址为,是由复旦大学发布的一个综合的、多学科的、能够自动更新的领域知识评估 Benchmark,包含 13 个学科门类,24 万道学科题目,516 个具体学科,249587 道题目。 此外,在多语言能力评测方面,还使用了以下数据集: MMMLU:来自 Okapi 的多语言常识理解数据集,在阿、德、西、法、意、荷、俄、乌、越、中这几个子集进行测试。 MGSM:包含德、英、西、法、日、俄、泰、中和孟在内的数学评测。针对人工评测,使用内部评估集比较了 Qwen272BInstruct 与 GPT3.5、GPT4 和 Claude3Opus,该评测集包括 10 种语言:ar(阿拉伯语)、es(西班牙语)、fr(法语)、ko(韩语)、th(泰语)、vi(越南语)、pt(葡萄牙语)、id(印度尼西亚语)、ja(日语)和 ru(俄语)。
2025-03-17
如何通过AI进行软件测试?有什么好用的AI工具,以及详细的步骤是什么?
以下是关于如何通过 AI 进行软件测试以及相关好用的 AI 工具和详细步骤的介绍: 一、基于规则的测试生成 1. 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 2. 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 二、基于机器学习的测试生成 1. 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 2. 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 三、基于自然语言处理(NLP)的测试生成 1. 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 2. 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 四、基于模型的测试生成 1. 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 2. 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 五、实践中的应用示例 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 六、好用的 AI 工具 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 希望以上内容对您有所帮助。
2025-03-16
帮我找一点生成小红书的 Ai 提示词测试一下看看
以下是为您提供的一些生成小红书的 AI 提示词示例: 1. 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频 角色:您是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。 技能:当用户输入主题{{zhuti}}时,分析主题内涵,运用专业知识,输出{{shuliang}}个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过 15 个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。 限制:仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量 yingwen,中文翻译对应变量 zhongwen,美式音标对应变量 yinbiao,英文句子对应变量 juzi_yingwen,中文句子翻译对应变量 juzi_zhongwen,不得有其他格式偏差。 2. 夙愿:用 AI 化繁为简,解决复杂问题的指南 提示词链:一个月前,通过逐步构建和不断优化提示词,最终迭代出一个小红书视频标题生成助手。收集高质量的标题示例作为后续分析的基础(纯人类),询问 GPT 分析标题特点的维度(人机协同),让 GPT 根据这些维度分析标题特点(人机协同),编写提示词(纯人类),测试提示词(人机协同),迭代提示词(人机协同)。 3. 一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词,生成预期内容 引言:一个精彩的 Prompt 是驱动 AI Agent 稳定运作的核心。例如常见的“小红书爆文生成 AI”提示词,包含精确、巧妙的提示。高质量的 Prompt 极度依赖用户通过逻辑思考,从知识经验中抽象表达出关键方法与要求。
2025-03-14
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
我想用ai对一个网站进行渗透测试 可以用哪些工具
以下是一些可用于对网站进行渗透测试的 AI 相关工具和信息: GPT4 能够在设计用于数字取证和渗透测试的 Linux 发行版上执行命令,并能扫描网络、确定目标主机、尝试常见密码等操作,但需要注意其使用应在合法范围内。 XBOW 正在开发的 AI 渗透测试员,其性能可与优秀的人类渗透测试员相媲美。 对于学习网络安全知识和技术,可参考以下合法途径: 阅读相关的书籍、论文、博客等。 参加专业的网络安全培训课程。 在合法的实验室环境下进行网络安全实验,如搭建虚拟网络环境、进行漏洞扫描和渗透测试等。 加入网络安全社区,与其他爱好者交流经验和技术。 同时,请确保所有的测试和实践都在合法和道德的范围内进行。
2025-03-10
利用 AI,基于需求文档生成 测试用例
以下是关于利用 AI 基于需求文档生成测试用例的相关内容: 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 此外,在编程中,用户故事也很重要。其目的在于确保开发团队能够理解用户需求,并从用户角度设计和开发功能。常规模板为:“作为。”在卡密系统中,写用户故事有三点作用:让执行者了解想要做什么样的应用,从而更准确地搭建代码框架;中途作为关键的上下文信息,确保方向不偏移;可以让 Cursor 依据用户故事生成对应的测试用例,保持功能的完整和准确。可以在 Cursor 里生成 MVP 的用户故事(用其他 AI 功能生成也可以),如点击 Cursor 后,选择提前创建的一个文件夹,创建需求文档,输入简短的需求描述,让 AI 帮助生成用户故事,然后按照实际情况接受并修改。
2025-03-05