Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我如何0基础学习ai

Answer

以下是 0 基础学习 AI 的建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

对于中学生学习 AI,还可以:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。请注意,部分内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

二师兄的AI启蒙之路(2024年)

我叫二师兄,来自上海,典型的80后,房地产行业从业二十年,计算机零基础。兴趣爱好:悠悠球、数码产品、游戏、音乐、手办、乐高、汽车2024年[heading1]一月[content]4070TiSuper发售,我买了显卡配了4K160显示器,备战2024年8月发售的国产3A大作黑悟空和2025年发售的GTA6[heading1]二月[content]过年后,在七彩虹的售后群,有个老哥在分享用AI绘画的心得,问他要了SD秋叶安装包,下载了教学视频,自此迈出AI学习的第一步[heading1]三月[content]啃完SD的所有教程,秉着不浪费显卡资源的原则开始炼丹,人脸、画风、风景、景观、建筑的丹练了一些,不过因为图片数据集的质量一般,且很多是公司里的项目案例图片,所有lora仅供自嗨[heading1]四月[content]与小伙伴探讨AI变现的途径,尝试用GPT和SD制作图文故事绘本、小说推文的项目,因组员各自忙于事业而不了了之。但过程中练了一些绘本风格的丹。[heading1]五月[content]因公司岗位可能有调动,提前把电脑运到武汉的家里,但最终工作地点仍在昆明,开启了长达五个月无硬件支持的AI学习之路。有幸加入到Prompt battle社群,开始了Midjourney的学习,这一阶段打磨了另一种形式的文生图提示词学习。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
我想学ai作图
以下是关于学习 AI 作图的一些指导: 比赛要求: 参加由麦乐园和摩达社区发起的“AI 梦一单一世界”比赛,需用摩搭平台和麦橘超然模型作为底膜训练 Lora,提交训练好的 Lora 及用其生成的六张以上高质量、展现完整世界观的作品。 作图思路: 1. 明确创作主题即锚点,根据 Lora 风格确定创作方向。 2. 确定主体,联想主体的角色设定。 3. 增加叙事感,让画面有一到两个及以上角色,制造反差和联想。 图片构成因素: 好看的图片的构成因素包括构图、色彩以及光影。 构图相关: 1. 概念:构图指在框架或空间内元素的摆放位置、形状、物体形状及纹理等,好的构图能引导观看者并创造和谐平衡。 2. 分类:包括景别(远景、全景、中景、近景、特写)和拍摄视角(俯视、平视、仰视,正面、侧面、背面)。 3. 要素:有主体、陪体、前景、背景、点线面,合理运用可丰富画面。 4. 方式:如点中心构图、九宫格构图、三分法构图、对称构图、对角线构图、曲线构图、框架构图、三角形构图等。在 AI 绘图中,推荐中景及以上景别,全身景别可能需开 AD 跳以确保作图质量。 创作有趣作品: 通过运用反差制造有冲击力的画面,创作出有叙事感和趣味性的作品。趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 提示词编写方法: 用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 实操演示: 以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。比如人物创作可以从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 另外,有人学习 AI 绘画的经历表明,如果要主动学习 AI,亲测有效的方式是让其看到 AI 能多快多好地完成手头的活儿。生成式 AI 目前还在非常早期的阶段,为 AI 找高价值应用场景或许能干个一二十年。
2025-02-27
AI的财务应用
AI 在财务领域有以下应用: 1. 更动态的预测和报告: 生成式 AI 能帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,并从更广泛、更复杂的数据集中为预测建议输入,还能建议如何适应模型以支持公司决策。 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 能帮助会计和税务团队综合、总结,并就税法和潜在扣除项提出可能答案。 能够自动生成和调整合同、采购订单、发票以及提醒。 2. 金融服务团队的内部流程优化:简化财务团队日常工作流程,帮助从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程,让 CFO 及其直接报告人从繁琐记录和报告任务中解放,专注于战略决策。 3. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15)在金融领域的情况: 如 Augment 于 2024 年 4 月 24 日完成 2.27 亿美元 B 轮融资,主营 AI 编码辅助。 Cognition 于 2024 年 4 月 24 日完成 1.75 亿美元融资。 Xaira Therapeutics 于 2024 年 4 月 23 日完成 10 亿美元 A 轮融资,从事 AI 药物研发。 Cyera 于 2024 年 4 月 9 日完成 3 亿美元 C 轮融资,是 AI 数据安全平台。 Celestial AI 于 2024 年 3 月 27 日完成 1.75 亿美元 C 轮融资,致力于用于 AI 存储和计算的光互连技术平台。 FundGuard 于 2024 年 3 月 25 日完成 1 亿美元 C 轮融资,是 AI 投资会计系统。 4. 相关的最新动态: Stripe Agent Toolkit 发布,让 AI 代理具备自动支付等财务能力,支持嵌入支付和财务服务功能,实现自动购物、订票、开票等,直接处理金融交易,突破 AI 应用与现实场景的连接瓶颈。
2025-02-27
小红书AI赛道从0到1
以下是关于小红书 AI 赛道从 0 到 1 的相关信息: 社区共学方面:包括 COZE 相关、magicarena 共学、阿里 deepseek 专题共学等,提供了飞书会议地址、共学详细内容等信息。 对话 AIGC 艺术家土豆人 tudou_man: 提到小红书用户和受众主要来自一二线城市,是很好的辐射渠道。 指出小红书对 AIGC 内容的接受度有阶段性变化,去年初期有流量红利,下半年下滑,今年开始官方扶持。 表明想把巨熊软糖做成 IP,但存在不稳定性问题。 去年同期有很多创作者,但很多因内容变现问题坚持不下去,现在又有新创作者涌入,与市场对 AIGC 内容的付费接纳有关。 强调全身心投入创作,为 AIGC 作品注入价值,并定期做行业分享。 解释选择小红书作为主要分享平台的原因。
2025-02-27
AI 渲染在游戏领域有什么应用
AI 渲染在游戏领域的应用包括以下方面: 1. 游戏场景创建:可用于生成逼真的游戏场景,如地形、建筑、风景等,提高开发效率。 2. 角色形象设计:帮助设计独特且丰富的角色外观。 3. 纹理贴图:为游戏中的物体和角色提供更精细的纹理。 4. 降低成本:例如美术方面,AI 管线和 AI 绘画可降低近 50%的成本。 5. 辅助策划:AIGC 工具能帮助策划先形成粗糙的美术想法,节省与美术同事沟通的时间成本。 6. 程序方面:AI 可分析他人代码,迅速同步关键信息,处理未遵守统一标准的代码,提升系统鲁棒性,降低开发成本。
2025-02-27
ai生成cad图
以下是关于 AI 生成 CAD 图的相关信息: 获取 AI 生成 CAD 图资料的途径: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关研究成果。 2. 专业书籍:查找 AI 在 CAD 领域相关的专业书籍,了解应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习,关注相关博客和新闻网站了解最新动态。 5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。 可用于生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,提供 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,可创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,能创建复杂 CAD 模型,包括拓扑优化等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据输入的设计目标和约束条件自动生成 3D 模型。 5. 主流 CAD 软件的生成设计工具:如 Autodesk 系列、SolidWorks 等,能根据输入自动产生多种设计方案。 此外,AdamCAD 也是一款通过简单语言描述生成复杂 CAD 图纸、支持直接 3D 打印的工具,适用于多种设计需求。
2025-02-27
请从知识库搜索相关自资料:AI与环境艺术设计:AI帮助生成设计灵感、AI优化空间布局、AI分析环境因素等
以下是关于 AI 生成 CAD 图的相关资料: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关的学术论文,以了解 AI 在 CAD 领域的应用和研究成果。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍,从中了解 AI 在 CAD 设计中的应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程。在 YouTube 等视频平台上查找教程和演示视频,了解 AI 在 CAD 设计中的应用。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关的技术论坛和社区,与其他专业人士交流和学习。同时关注 AI 和 CAD 相关的博客和新闻网站,了解最新的技术动态和应用案例。 5. 开源项目和代码库:在 GitHub 等开源平台上探索 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用,了解 AI 在 CAD 设计中的应用和实现。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解 AI 技术在实际项目中的应用和效果。 在学习和研究 AI 生成 CAD 图的过程中,了解相关的基础知识和技术细节非常重要。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的不断发展,AI 在 CAD 设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。
2025-02-27
请推荐相关的学习资料: AI与新媒体设计:AI视频编辑、AI社交媒体内容创作、ai虚拟现实与增强现实设计等。
以下是为您推荐的关于 AI 与新媒体设计(如 AI 视频编辑、AI 社交媒体内容创作、AI 虚拟现实与增强现实设计等)的学习资料: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 filMarathon 全球 AI 电影马拉松大赛参赛引导中的学习资料: 音效创作指导: 语音合成: 剧本创作:人力为主: 图片生成:AI 作图绘画: 视频生成:AI 视频生成: 音频生成:AI 音乐创作: 剪辑工具:剪映剪辑:
2025-02-27
请推荐相关的学习资料: AI与新媒体设计:探索AI如何影响视频编辑、社交媒体内容创作、虚拟现实与增强现实设计等。
以下是关于学习“AI 与新媒体设计”的相关资料推荐: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据自己的兴趣选择特定的模块进行深入学习,建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,通过对话获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-02-27
- AI与广告设计:学习AI在广告创意生成、内容优化、广告效果分析等方面的应用。
以下是关于 AI 在广告设计方面的应用知识: AI 绘画: 定义与发展:AI 绘画是利用人工智能技术,通过算法和模型让计算机生成具有一定艺术效果的图像。早期成果简单粗糙,随着技术进步,尤其是深度学习算法的应用,如卷积神经网络等,能生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,并在与人类艺术家的互动和融合中不断创新。 场景应用:在广告设计中,可快速生成各种创意概念图,为广告策划提供灵感和初稿。 AI 创意设计: 业务价值:AI 广告语使用门槛低,输入品牌信息即可一键生成广告语及评分,生成质量高。 包含能力:AI 设计,通过对话方式表达设计需求,一键生成可编辑的图文音视频的多模态创意;AI 生图,利用文生图/图生图能力,并集成抠图、扩图、改图、商品图等能力,解决各类营销场景素材生成需求;模板中心,基于广告营销的各类场景,内置数十万精选模板并支持强大易用的在线拖拽模式,降低创意制作门槛。 大模型商业化落地现状: 医疗行业:涵盖疾病的诊断与预测、药物研发以及个性化医疗三个方向。例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 广告营销行业:是 AIGC 应用最多的业务场景之一,在营销行业从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,对于广告图案的生成可通过 AI+设计相关的 SOP 提高效率,能降低内容制作成本并加速创意实现。
2025-02-27
我做一个小白,请帮我规划一个学习路径,让我快速掌握AI工具使用
以下是为您规划的快速掌握 AI 工具使用的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,学习生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有以下几点建议: 1. 多看教程,多实践:通过学习教程和反复实践,可以快速掌握 AI 工具的使用方法。 2. 积极参与社群交流:加入相关社群,向有经验的朋友请教,可以获得很多宝贵的经验和建议。 3. 保持好奇心和探索精神:AI 技术发展迅速,不断学习和探索新技术,可以让您在这个领域中保持竞争力。 希望以上学习路径和建议对您有所帮助!
2025-02-27
小白需要从哪里开始学习ai呢
对于小白学习 AI,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,其中有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考以下经验: 像《雪梅 May 的 AI 学习日记》中提到的学习模式,即输入→模仿→自发创造。 注意学习资源的时效性,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 保持良好的学习状态,不必有心理压力,能学多少算多少。 利用免费开源的学习资源。
2025-02-27
深度学习ai模型有哪些
以下是一些常见的深度学习 AI 模型: 1. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 2. LLM(大语言模型):例如谷歌的 BERT 模型,可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 3. Transformer 模型:2017 年 6 月由谷歌团队提出,完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。 深度学习是一种参照人脑神经网络和神经元的方法,其中的神经网络可用于监督学习、无监督学习、强化学习等。在机器学习中,包括监督学习(有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。而 AI 即人工智能,机器学习是其重要组成部分。
2025-02-27
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
aI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,浏览入门文章。 2. 开始学习之旅:在「」中找到为初学者设计的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):系统介绍神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-27
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
ai基础
以下是关于 AI 基础的全面介绍: AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程及重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 评估和调优: 性能评估:学会如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:掌握使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 新手学习 AI 的建议: 了解 AI 基本概念:阅读相关部分熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习,推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品并分享实践成果。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 书籍推荐: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):系统了解认知神经科学的多方面内容。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):涵盖神经元、认知等多方面知识。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,介绍神经生物徐的基本概念等。
2025-02-26
为我提供相关的学习课程,方便我可以高效上手学习,零基础代码,开始去学习搭建自己的工作流
以下是为您提供的相关学习课程,方便您零基础代码学习并搭建自己的工作流: 8 月 13 日 ComfyUI 共学: 讨论了 Config UI 的学习需求、教程分享、部署问题、应用场景,以及相关活动的规划。 分享了 Config UI 工作流在不同场景的应用、优势、弊端以及学习方法,还提及了相关的分享会和开源社区的情况。 探讨了 CONFIUI 的使用、工作流分享、报错问题及解决方案,还有相关课程的设计安排。 讨论了郭佑萌在 AI 绘图领域的工作经历,包括项目实践、技术调研、培训以及未来的教学计划等内容。 介绍了 AI 绘图课程的规划。 课程从零基础开始,从认识 config、UI 及行业概念讲起,逐步深入到环境部署、底层技术概念、提示词等内容。 介绍了 config 牛角尖大王系列,包括 control net、IP Adapter、图像放大、mask 等部分,阐述了它们的作用和玩法。 学习相关知识后初步具备搭建复杂工作流能力,会拆解分析网上热门工作流。 报错问题可分为网络、模型、工作流搭建、环境等方面,安装新插件时可参考项目地址的 requirement 文档。 规划了实战案例思路。 ComfyUI 共学快闪: 王蓉🍀🎈Wang Easy 基础搭建和转绘。 唯有葵花向日晴基础教程,工作流开发,实际应用场景。 热辣 HuolarrAI 系统课私聊图生视频。 咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点。 傅小瑶 Lucky 如何制作多人转绘视频。 云尚工作流节点搭建思路。 FǎFá 热门节点功能,搭建。 森林小羊基本报错解决方式及基础工作流逻辑分析。 苏小蕊基础教程。 Sophy 基础课程。 蜂老六装一百个最新常用插件后如何快速解决冲突问题。 阿苏工作流框架设计。 aflyrt comfyui 节点设计与开发。 老宋&SD 深度解释虚拟环境部署和缺失模型的安装。 Liguo 模型训练。 啊乐福基础课程。 塵优秀案例。 风信基础课程➕平面设计应用场景。 北南基础课程。 视频工作流框架设计。 Damon 基础课程。 渔舟基础课程+工作流搭建思路。 乔木船长工作流。 ☘️基础教程。 ☘基础教程。 工作流设计+典型案例剖析。 麒白掌工作流搭建。 OutSider 风格迁移。 吴鹏基础+工作流搭建。 拾光工作流基础搭建从入门到精通。 茶浅浅。视频转绘/节点工作流介绍。 百废待.新(早睡版)工作流从入门到进阶。 电商应用场景。 AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书): 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻麦洛薇机器人。 飞书机器人创建: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg。
2025-02-26