Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek和chatgtp的训练方式有什么不同

Answer

DeepSeek R1 的训练方式采用强化学习(RL),跳过了监督微调(SFT)阶段。而 ChatGPT 采用预训练+监督微调(SFT)的方式。

ChatGPT 这种方式适用于知识性问答。DeepSeek R1 能自发进行复杂推理,自我回溯、多角度思考,解题过程更完整,但其计算成本更高。在日常查询方面,GPT-4o 更快、更适合简单咨询。DeepSeek R1 则在高难度数学和编程问题上更具优势,且更加透明,研究细节可复现,权重可下载。

Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

App Store排名:DeepSeek R1冲到了美国区App Store第一名,超越了OpenAI的ChatGPT。口碑与技术实力:DeepSeek没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得了用户的认可。[heading2]DeepSeek R1的技术特点[content]性能与成本:DeepSeek R1的效果比肩顶尖闭源模型o1,但价格仅为o1的27分之一。开源与创新:DeepSeek R1的开源让行业认知整体拉齐,得到了全世界的尊重和喜爱。[heading2]DeepSeek R1的创新模型R1 Zero[content]训练方式:R1 Zero跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。研究结论:模型的思考能力是可以自我涌现出来的,这一发现具有革命性。[heading2]DeepSeek R1的影响[content]行业影响:DeepSeek R1的发布引发了美国科技界的恐慌,Meta内部对DeepSeek V3的出色表现感到震惊。市场影响:DeepSeek R1的低成本和高性能使得英伟达的市场地位受到挑战,其股价短期内大跌超3%,市值蒸发超300亿美元(27日盘前又跌14%)。[heading2]DeepSeek R1的未来展望[content]开源模型的进步:开源模型的进步将超越闭源模型,顶级模型的推理价格急速下降,技术更加普惠平权。AI编程与创作:AI编程将随着模型能力的提高,显著提升效率并降低门槛,AI的创作能力将不断提升,催生更多AI创作的可消费内容形式。

详解:DeepSeek深度推理+联网搜索 目前断档第一

App Store排名:DeepSeek R1冲到了美国区App Store第一名,超越了OpenAI的ChatGPT。口碑与技术实力:DeepSeek没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得了用户的认可。[heading2]DeepSeek R1的技术特点[content]性能与成本:DeepSeek R1的效果比肩顶尖闭源模型o1,但价格仅为o1的27分之一。开源与创新:DeepSeek R1的开源让行业认知整体拉齐,得到了全世界的尊重和喜爱。[heading2]DeepSeek R1的创新模型R1 Zero[content]训练方式:R1 Zero跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。研究结论:模型的思考能力是可以自我涌现出来的,这一发现具有革命性。[heading2]DeepSeek R1的影响[content]行业影响:DeepSeek R1的发布引发了美国科技界的恐慌,Meta内部对DeepSeek V3的出色表现感到震惊。市场影响:DeepSeek R1的低成本和高性能使得英伟达的市场地位受到挑战,其股价短期内大跌超3%,市值蒸发超300亿美元(27日盘前又跌14%)。[heading2]DeepSeek R1的未来展望[content]开源模型的进步:开源模型的进步将超越闭源模型,顶级模型的推理价格急速下降,技术更加普惠平权。AI编程与创作:AI编程将随着模型能力的提高,显著提升效率并降低门槛,AI的创作能力将不断提升,催生更多AI创作的可消费内容形式。

宝玉 日报

AI识别问题,生成JSON:调用天气查询工具,参数=“上海”。程序调用天气API,获取数据后反馈给AI。AI组织语言输出:“今天上海天气晴转小雨,1度,出门带伞,多穿点衣服。”🔗[https://x.com/dotey/status/1888104084835647516](https://x.com/dotey/status/1888104084835647516)3⃣️🧠强化学习如何让大模型学会“思考”?🔍Andrej Karpathy深度解析ChatGPT和DeepSeek R1GPT-4o采用预训练+监督微调(SFT),适用于知识性问答。DeepSeek R1采用强化学习(RL),能自发进行复杂推理,自我回溯、多角度思考,解题过程更完整。📌DeepSeek R1的优势更加透明,研究细节可复现,权重可下载。适用于高难度数学和编程问题,但计算成本更高。日常查询:GPT-4o更快、更适合简单咨询。🔗[https://x.com/dotey/status/1888095733154201674](https://x.com/dotey/status/1888095733154201674)

Others are asking
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
deepseek的提示词有哪些特别之处
DeepSeek 的提示词具有以下特别之处: 1. 语气还原:能还原帝王语气,相比其他模型输出,语气恰当,不过分用力,兼顾古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:与其他 AI 不同,其输出充满具体而惊人的细节,行文隐喻拿捏到位,高级且能让画面跃然纸上。 4. 增添场景描述:在独白文本中“自作主张”地加入括号中的场景描述,增强画面感,如“夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页”等。 5. 预判用户需求:对于简洁且无形容词、无倾向性的提示词,如“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”,能准确预判用户想要的输出,自然想到添加文学性。
2025-02-27
个人有没有必要本地部署deepseek模型
个人是否有必要本地部署 DeepSeek 模型取决于多种因素。 DeepSeek 模型的权重文件开源,可本地部署。其公司名为“深度求索”,网页和手机应用目前免费,但 API 调用收费。 在云端模型部署方面,有实操演示和使用方法讲解,包括登录 Pad 控制台、选择框架、资源、出价等,还介绍了查看部署状态和日志的方法,以及用 Postman 在线调试模型获取名称及后续使用方式。 在模型部署相关内容中,部署时使用 V1 chat completion s 接口,要注意模型名称、大小写等。同时布置了作业为成功部署大语言模型并调试,提交带钉钉昵称的截图。还讲解了 API 调用方法、费用、停止服务方式等,提醒注意保密 API key,若竞不到价可加价尝试进行本地蒸馏模型部署。 模型蒸馏方面,先介绍云平台部署情况,接着讲解模型蒸馏概念、方式,阐述其应用场景及修复模型幻觉的作用,并进行了实操演示。 综合来看,如果您对数据隐私有较高要求、需要定制化的模型服务、有足够的技术能力和资源来进行本地部署和维护,或者在网络不稳定的情况下使用,那么本地部署可能是有必要的。但如果您的需求相对简单,且不具备相关技术条件和资源,使用云端服务可能更为便捷。
2025-02-27
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方是硅谷味儿的:将其比喻成“AI 界的拼多多”是偏颇的,其在硅谷受到关注和追逐并非近期才发生。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新引发小范围轰动,而当时在国内舆论场被描摹成“大模型价格战的发起者”,形成平行时空的感觉。这表明 DeepSeek 与硅谷更有对话和交流的密码。 2. V3 是 DeepSeek 的 GPT3 时刻:如果 V3 真的是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 作为中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷味儿的。 3. 一个提示词让 DeepSeek 能力更上一层楼:通过 Coze 做小测试进行效果对比。使用方法包括搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。其设计思路包括将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现同时使用联网和深度思考功能,在模型默认能力基础上优化输出质量等。完整提示词版本为 v1.3,特别鸣谢李继刚和 Thinking Claude 等。
2025-02-27
高校如何自己本地部署DEEPSEEK
高校本地部署 DEEPSEEK 可以参考以下内容: 1. 了解相关平台服务差异,如 DLC、DSW 和 EAS 等模型部署平台服务的不同。 2. 如果拥有云服务器,可以进行本地部署,但要注意满血版本地部署的实际情况。 3. 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 5. 模型试用可以使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。 6. 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 7. 实战演练 DeepSeek R1 满血版快速部署和蒸馏训练。 以上信息仅供参考,具体操作可能会因实际情况有所不同。
2025-02-27
豆包如何切换deepseekR1大模型
要切换到 DeepseekR1 大模型,您可以参考以下步骤: 1. 对于新闻播报自动化工作流: 首先,输入新闻链接,系统会自动提取核心内容。添加网页图片链接提取插件,获取网页里的图片。 接着,利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。 然后,使用链接读取节点提取文字内容,并在提取链接后面接上一个大模型节点,使用 DeepseekR1 模型生成有吸引力的口播内容。 注意,DeepseekR1 基础版本限额使用,可在专业版手动接入。手动接入时,先点击 https://www.volcengine.com/experience/ark?utm_term=202502dsinvite&ac=DSASUQY5&rc=A6NPZ83H 领取 375 万 R1 模型的 tokens(手机用户可扫描二维码),再到 https://www.volcengine.com/,根据相关截图自行接入推理点。为了后续批处理,需将输出格式设置为 Array<String>格式。 2. 对于飞书多维表格相关操作: 可参考教程“”。 例如,在制作【AI 书单】时,可把图书的封面图复制到多维表格里,AI 能自动识别【书名和作者】;用字段捷径【AI 搜索】找到豆瓣评分;用字段捷径【自定义 AI 自动填充】识别图书的内容概述、适用人群、推荐理由;用【信息提取】分别把主题、核心观点、故事梗概、适用人群、推荐理由提取出来。
2025-02-27
大模型训练全流程
大模型训练通常包括以下全流程: 1. 收集海量数据:如同教导孩子成为博学多才之人,要让其阅读大量书籍、观看纪录片、与人交谈,对于 AI 模型,就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这种架构擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始学习,AI 模型开始“阅读”提供的数据,通过反复阅读尝试预测句子中的下一个词,从而逐渐学会理解和生成人类语言。 此外,大模型训练还可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 一般训练还会有以下步骤: 1. 无监督学习:模型通过分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 2. 清洗出好的数据。 3. 指令微调:训练模型理解并执行具体指令,如翻译文本以回答问题,输入内容包括特定格式的指令、输入和输出。 4. 对齐过程:通过引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 虽然各公司具体实现细节可能是机密,但这些步骤共同构成了构建高效、实用大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖社区贡献,闭源模型由企业投入大量资源开发,两种策略都旨在推动大语言模型技术发展和应用。
2025-02-26
目前市面上有哪些ai可以实现免费创建并训练大模型,以满足个人需求
目前市面上有以下一些可以免费创建并训练大模型以满足个人需求的途径: 1. 免费云服务器: 阿里、腾讯对新用户提供免费试用服务器,如腾讯云的。服务器系统配置可选择【宝塔】系统。 2. 免费大模型接口: 阿里的接口,创建 API key 即可。 也有免费接口,但国内大模型通常限制一定免费额度的 Token。 谷歌的来学习如何给服务器科学上网及使用海外版 Coze。 此外,关于大模型的相关知识: 1. 架构方面: encoderonly 模型通常适用于自然语言理解任务,如分类和情感分析,最知名的代表模型是 BERT。 encoderdecoder 模型同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是谷歌的 T5。 decoderonly 模型更擅长自然语言生成任务,目前熟知的众多 AI 助手基本都来自此类架构。 2. 大模型的特点: 预训练数据非常大,往往来自于互联网上,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 参数非常多,Open 在 2020 年发布的 GPT3 就已经达到 170B 的参数。 在技术原理方面: 1. 生成式 AI 生成的内容叫做 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习从反馈里学习,最大化奖励或最小化损失。深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-02-26
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
AI发展的方式除了大模型,还有什么
AI 的发展方式除了大模型,还包括以下方面: 1. 算法:算法的不断优化和创新推动着人工智能的发展。 2. 算力:强大的算力支持是实现复杂人工智能任务的基础。 3. 数据:优质的数据集对于人工智能学习算法的发展至关重要,被称为“AI 时代的石油”。 4. 深度神经网络:通过简单细胞检测特征、复杂细胞汇总信息产生结果等方式实现识别、判断和行动等功能。 5. 端侧模型:端侧模型并非越小越好,而是要够用、好用,设备算力决定最优模型规模,多模态能力是突破通用计算的关键。 6. 端侧 Agents:在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力,是连接模型与应用的关键。 7. 预训练:包括对编程语言、维基百科、新闻常识、网络社区、各类书籍等内容的预训练,但由于版权和费用问题,不包括期刊论文数据库。 8. 开源生态:促进了 AI 技术的交流和发展。
2025-02-15
普通人学习ai生图方式
以下是为普通人提供的学习 AI 生图的相关内容: 如何判断一张图片是否 AI 生成: 当我们接触的 AI 制品增多,可通过“整体看光影,细节看结构”的技术要点来找出画面 bug。通过大量分析 AIGC 画作,人们会在脑中形成“判断模型”,但起初可能“知其然,不知其所以然”。从本质上看,人类绘画创作是线性发展,而 AI 是以积累数据、扩散噪声、再降噪收束的路径生图,会导致同一张图呈现不同绘画级别的细节。 Liblibai 简易上手教程: 1. 首页模型广场:展示其他用户的模型,可查看详情、收藏并用于生图。 2. Checkpoint:生图必需的基础模型,必选。 3. Lora:低阶自适应模型,类似 Checkpoint 的小插件,可有可无,用于控制细节。 4. VAE:编码器,类似滤镜,调整生图饱和度,可无脑选 840000。 5. CLIP 跳过层:用于生成图片后控制、调整构图变化,一般设为 2。 6. Prompt 提示词:想要 AI 生成的内容。 7. 负向提示词 Negative Prompt:想要 AI 避免产生的内容。 8. 采样方法:选择让 AI 生图的算法。 AI 线上绘画教程: 如果需要大量商用且具艺术美感的图片,AI 生图是高效办法。主流工具如 midjourney 付费成本高,stable diffusion 硬件门槛不低,可选择免费在线 SD 工具网站如。本教程适用于入门玩家,旨在让读者半小时内自由上手创作绘图。
2025-02-14
在2025年2月12日这个时间点,我有哪些方式可以快速,稳定的使用 deepseek r1
在 2025 年 2 月 12 日,您可以通过以下方式快速、稳定地使用 DeepSeek R1: PPIO 派欧云(https://ppinfra.com/modelapi/product/llmapi?utm_medium=article&utm_source=WayToAGI):提供满血版全版本的 DeepSeekR1,输入价格为¥4/百万 tokens,输出价格为¥16/百万 tokens。有开发者福利,新注册立得 500 万 tokens(关注 PPIO 公众号回“deepseek”再领 1 亿),初创企业认证有 10 万算力补贴。产品服务特点为服务稳定性 99.9%,保持 0 故障,与 DeepSeek 官方同价,客户支持通道 10 分钟响应。 百度智能云:DeepSeekR1 限时免费,配额 1000RPM/10000TPM,无调用 tokens 上限。本模型将于 2025 年 2 月 19 日 00:00 起正式商用计费,输入价格 0.002 元/千 tokens,输出价格 0.008 元/千 tokens,有在线体验。 硅基流动:DeepSeekR1 输入价格为¥4/M Tokens,输出价格为¥16/M Tokens,有在线体验。2025 年 2 月 6 日起,未实名用户每日最多请求此模型 100 次。 此外,在 2 月 12 日,还有以下相关内容: 《》,来自社区伙伴 Hua 的投稿,手把手指导您在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 《》Anthropic 正式发布 Anthropic AI Economic Index,聚焦 AI 对经济的长期影响。该指数直观展现 AI 如何融入现代经济的各类实际任务,并从职业(occupation)和具体工作任务(task)两个维度,量化 AI 对劳动力市场的影响。 《》DeepSeekR1 的火爆现象背后,企业可以获得显著提升。其强化学习和联网搜索能力,改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。同时,DeepSeek 的开源策略打破了技术垄断,让国内大模型能力迅速提升。
2025-02-12
问答方式如何使用好大模型
以下是关于如何使用好大模型的一些指导: 1. 本地部署资讯问答机器人: 加载所需的库和模块,如用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,可通过指定的 RSS 订阅 url 提取,如需多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成小块,并附带相关元数据,最终合并成列表用于后续处理。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型放置在指定路径,通过函数利用 FAISS 创建高效向量存储。 Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。提供模型库,用户可从中下载不同模型,还支持自定义模型,如修改温度参数等,同时提供 REST API 用于运行和管理模型及与其他应用集成,社区贡献丰富。需先安装,可通过 https://ollama.com/download/ 下载,安装后确保后台服务已启动。 2. 编写清晰的说明: 在 OpenAI 官方说明文档中提到的“官方最佳实践”为用户提供了若干策略。 策略一是编写清晰的说明,在询问中包含详细信息,多说一些内容,多提供一些信息,能有效提高大模型回复的质量和丰富性。通过多个具体例子展示了提供更多细节能得到更符合预期的回答。
2025-02-11
deepseek的提问方式和指令输入规则是什么
DeepSeek 的提问方式和指令输入规则如下: 核心原理认知: AI 特性定位:支持文本/代码/数学公式混合输入,具有动态上下文(约 4K tokens 上下文窗口)和任务适应性(可切换创意生成/逻辑推理/数据分析模式)。 系统响应机制:采用意图识别+内容生成双通道处理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架: 四要素模板:如果不知道如何表达,可套用框架指令。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 性能监测体系:包括需求理解准确率(复杂需求首轮响应匹配度)、知识迁移能力(跨领域案例应用的合理性)、思维深度指数(解决方案的因果链条长度)。新一代交互范式建议采用「人机共谋」模式、启动「思维可视化」指令、实施「苏格拉底式对话」。通过将深度思考能力与场景化需求结合,可解锁 DeepSeek 的「认知增强」模式,建议通过 3 轮迭代测试(需求表达→深度追问→方案优化)建立个性化交互模式。
2025-02-05
大模型训练方式
大模型的训练方式如下: 1. 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比其训练和使用过程: 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:即选择合适算法讲述“书本”内容,让大模型更好理解Token之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token被视为模型处理和生成的文本单位,能代表单个字符、单词等,在将输入进行分词时,会形成词汇表。 2. 100基础训练大模型的步骤: 步骤一·创建数据集:进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中点击右上角创建数据集,输入数据集名称。zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件,也可以一张一张单独上传照片,但建议提前把图片和标签打包成zip上传。Zip文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 步骤二·Lora训练:点击Flux,基础模型会默认是FLUX 1.0D版本,选择数据集,点击右侧箭头,会跳出所有上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认20重复次数和10轮训练轮数,可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地。 步骤三·Lora生图:点击预览模型中间的生图会自动跳转到相应页面。模型上的数字代表模型强度,可在0.61.0之间调节,也可以自己添加lora文件,点击后会显示训练过的所有lora的所有轮次。VAE不需要替换,正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图,选择生成图片的尺寸,横板、竖版、正方形。采样器和调度器新手小白可以默认,迭代步数可以在2030之间调整,CFG可以在3.57.5之间调整,随机种子1代表随机生成图。所有设置都好了以后,点击开始生态,生成的图会显示在右侧。如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。如果确认了一张很合适的种子和参数,想要搞清放大,则点开高清修复,可以选择想放大的倍数,新手小白可以就默认这个算法,迭代步数建议在2030之间,重回幅度根据需求调整,正常在0.30.7之间调整。 3. 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-01-23