Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI产品经理实战手册

Answer

以下是为您提供的关于 AI 产品经理的相关信息:

  1. 2 月 7 日的《DeepSeek 爆火的当下:2025,人人都是顶尖 AI 产品经理实操指南》指出,过去一年“AI 在产品管理中的应用”成为热门话题,“所有产品经理都需要成为 AI 产品经理”的观点在各种场合反复出现,AI 正在重塑工作方式。
  2. 《Claude 的 5 层 Prompt 体系:从 AI 用户到 AI 指挥官的进阶之路》中提到,将复杂需求拆解为原子化 Prompt 组件是掌握 5 层 Prompt 体系的关键,并通过跨国科技公司规划下一代智能家居系统的实际案例展示了应用方法,包括 User Requirement、System Prompt、Global Rule 等多个层面,还创建了多种风格用于不同场景。
  3. 对于 AI 产品经理的划分,仅供娱乐和参考:
    • 入门级:能通过开源网站或课程了解 AI 概念,使用并动手实践应用搭建。
    • 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用工具手搓出 AI 应用验证想法。
    • 落地应用级:有成功落地应用案例并产生商业化价值。同时指出,对 AI 产品经理要求懂得技术框架,对技术边界有认知,产品经理要关注场景、痛点、价值。还列举了一些落地案例。
Content generated by AI large model, please carefully verify (powered by aily)

References

2月8日 社区动态速览

《[DeepSeek爆火的当下:2025,人人都是顶尖AI产品经理实操指南](https://mp.weixin.qq.com/s/SDPy_H3qOmomAr6o9KKwGA)》过去一年,"AI在产品管理中的应用"成为了行业的热门话题。"所有产品经理都需要成为AI产品经理"-这句话在各种场合反复出现。有人对此充满期待,也有人心存疑虑。但不可否认的是,AI确实正在重塑我们的工作方式。ARK Invest的《[Big Ideas 2025](https://waytoagi.feishu.cn/record/WNEGrnxuNeZKCJc9z2ecEJJdnGd)》报告探讨了未来几年可能推动全球经济增长的颠覆性技术创新。报告聚焦于五大技术平台:人工智能、机器人、能源存储、公共区块链和多组学技术,并提出了11个“大创意”,涵盖从AI代理、比特币、稳定币到自动驾驶出租车、自主物流和可重复使用火箭等领域。报告指出,这些技术的融合将大幅提升生产力,推动行业变革,并创造长期投资机会。《[我所见过的梁文锋](https://zhuanlan.zhihu.com/p/21738083977)》“幻方某种程度上增强了对技术驱动型创新的信心,但也不都是坦途。我们经历了一个漫长的积累过程。外部看到的是幻方2015年后的部分,但其实我们做了16年。对顶级人才吸引最大的,肯定是去解决世界上最难的问题。我们就在做最难的事。”

深度长文|Claude的5层Prompt体系:从AI用户到AI指挥官的进阶之路

将复杂需求拆解为原子化Prompt组件是掌握这个体系的关键。让我们通过一个实际案例来看看如何应用这5层体系来解决复杂的业务问题。假设你是一家跨国科技公司的产品经理,正在规划下一代智能家居系统。你可以这样应用5层Prompt体系:1.User Requirement:2.System Prompt:利用Claude的内置知识库,我们不需要解释什么是智能家居或基本的产品管理概念。3.Global Rule:4.在所有分析中:-优先考虑用户隐私和数据安全-关注产品的可持续性和能源效率-提供数据支持的市场洞察-考虑全球不同地区的文化差异和法规要求5.Project Custom Instruction:创建一个'智能家居创新'项目,上传:公司过去的产品数据和用户反馈最新的智能家居市场研究报告主要竞争对手的产品分析公司的技术专利库指示AI在生成想法时参考这些资料。6.Styles:创建多个风格:'创新头脑风暴':用于生成创意点子'严谨分析':用于技术可行性和市场分析'用户故事':用于描述产品使用场景'高管简报':用于总结关键点,适合向高层汇报通过这种方法,你可以从AI获得全面而深入的产品规划建议。例如,当你切换到'创新头脑风暴'风格时,可能会得到类似这样的输出:'想象一个智能镜子,不仅能显示时间和天气,还能根据你的日程安排和健康数据,主动提供穿衣建议和健康提醒。它可以检测你的情绪状态,在你看起来疲惫时自动调整家中的灯光和音乐来帮助你放松。这个镜子还可以与家中的其他智能设备无缝连接,成为整个智能家居系统的中央控制台。'

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

个人做了一下划分,仅供娱乐和参考。1)入门级能通过WaytoAGI等开源网站或一些课程了解AI的概念,使用AI产品并尝试动手实践应用搭建(对应的画像可能是喜欢听小宇宙APP的播客或浏览AI相关的文章哈哈);以前互联网刚兴起的时候,部分用谷歌的人会比用百度的有优越感,现在可能用AI搜索的更有优越感(当然我感觉都没啥好优越的,都是工具,关键还是看能用工具产出什么)。2)研究级我理解这里有两个路径,一个是技术研究路径,一个是商业化研究路径;对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,当然最好是同一个人,我一直的理念是产品运营不分家(产品即运营)。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用Hugging face等工具手搓出一些AI应用来验证想法;3)落地应用这一阶段我理解的画像就是有一些成功落地应用的案例,如产生商业化价值。对应传统互联网PM也有三个层级:1)负责功能模块与执行细节;2)负责整体系统与产品架构;3)熟悉行业竞争格局与商业运营策略;总结来说,对AI产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI说白了也是工具和手段,我认为产品经理要关注的还是场景、痛点、价值。举一些我们之前做的落地案例(我个人也是在2017年开始关注机器学习,还报了风变的Python课程,不过当时没有深入研究)。

Others are asking
用什么ai写论文比较好
在论文写作领域,AI 技术的应用发展迅速,能在多方面提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮您精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合了自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时,有消息称 Sakana AI 用 AI Scientistv2 模型生成的论文通过 ICLR 2025 双盲评审,但他们主动撤回论文,呼吁学术界先制定 AI 论文规范。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
怎么使用AI根据一篇论文直接生成PPT
以下是使用 AI 根据一篇论文直接生成 PPT 的一些方法和步骤: 1. 利用 AI 摘要论文内容并生成大纲列表,或者让 AI 根据主题扩充成大纲列表乃至具体内容。 2. 可以使用特定的 AI 工具,如 Claude 和 Gamma.app 。Claude 能帮助快速寻找符合条件的论文、提取精炼论文中某部分信息,并找到适合的 PPT 制作工具及教会使用。 例如,通过与 Claude 对话解决学术网站的条件搜索问题,如“帮我搜索一下营销领域最权威的期刊是哪几本”等。 3. 给 AI 一段数据、描述信息媒介的进化史、总结文章全文等,让其进行可视化展示。 4. 模型选择方面,目前推荐 Claude 3.7 Sonnet ,可通过 POE 调用 Claude 等方式。 需要注意的是: 1. 别指望有一段提示词复制就能得到满意的结果,这是一个和 AI 互动的过程,需要反复尝试。 2. 使用 AI 生成“PPT”实际上是基于模型的 HTML 输出能力,并非真的 PPT 格式,目前无法在 PPT 里进行二次深度编辑。
2025-04-01
AI对社会经济的影响,AI时代有哪些新的竞争机会
AI 对社会经济的影响主要体现在以下几个方面: 1. 引领新的服务模式:如“智能即服务”,重塑工作和生活,增强能力、实现自动化和改变交互方式。 2. 赋能相关行业:为芯片和云计算行业带来新机遇,推动其发展,GPU 需求预计持续增长。 3. 创造投资机会:企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件,有望成为重要爆发点。 4. 影响企业竞争策略:企业竞争策略分化,有的迅速成长为大型模型公司并寻找强大背书,有的保持小规模专注盈利并灵活应对市场变化。 5. 推动科技巨头合作:科技巨头通过资本控制 AI 模型公司,为其提供算力,加速行业发展。 在 AI 时代,新的竞争机会包括: 1. 成为大型模型公司并获得强大背书,以取得竞争优势。 2. 保持小规模,专注盈利和灵活应对市场变化。 3. 在特定领域如企业软件、金融服务、健康技术等,利用 AI 创新获得发展机会。 4. 适应权力格局变更,应对“AI 寡头”或“超级强国”的出现,寻找新的发展空间。 同时,AI 时代还具有以下特点和趋势: 1. 未来变化深远,人们会找到新的做事、服务彼此和竞争的方式。 2. 主动性、意志力和毅力将极其宝贵,韧性和适应能力值得培养。 3. AGI 将成为人类意志最大的杠杆,个人能产生更大影响。 4. AGI 的影响不均衡,科学进步速度可能更快,部分商品价格大幅下降,奢侈品和有限资源价格可能上涨。 5. AI 将渗透到经济和社会各领域,人们期待所有事物具有“智能”特质。 6. 权力金字塔可能重塑,率先开发或控制 AGI 的主体将获得巨大战略优势,可能出现“AI 寡头”或“超级强国”,威胁民主和公平竞争。
2025-04-01
我需要批量对比两版教材中具体文字和插图的变化调整,该使用什么ai工具最合适
对于批量对比两版教材中具体文字和插图的变化调整,目前没有直接针对此需求的特定 AI 工具。但您可以考虑以下几种方式和相关工具来实现类似的功能: 1. 利用自然语言处理技术,如使用 ChatGPT 等语言模型,辅助您对教材的文字内容进行分析和比较,但可能需要您对结果进行进一步的整理和判断。 2. 对于插图的对比,可以尝试使用图像编辑软件,虽然不是专门的 AI 工具,但通过手动操作和一些辅助功能,也能在一定程度上进行比较和分析。 3. 如果您具备一定的编程能力,可以考虑使用相关的图像处理库和自然语言处理库,自己开发一个简单的对比工具。 另外,在一些工作场景中,如批量制作单词卡片,可以使用搞定设计来批量产图,并结合 ChatGPT 辅助生成和整理内容。在图像生成和处理方面,Stable Diffusion 可以用于图像的生成、修改和局部重绘等操作。
2025-04-01
AI将带来哪些新赛道、新机会
AI 带来的新赛道和新机会包括以下方面: 1. 引领新的服务模式,即“智能即服务”,重塑工作和生活,为芯片和云计算行业带来新机遇,GPU 需求预计持续增长。 2. 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额可能成为下一轮 AI 革命的重要爆发点。 3. 科技巨头通过资本控制 AI 模型公司,企业竞争策略呈现分化,行业未来更加多元化和复杂。 4. 大模型争霸,如 OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等公司相互竞争,为 AI 发展设定标准。 5. 随着模型规模和自然语言理解能力增强,专业创作和企业应用将改变甚至颠覆,如营销文案、邮件沟通、客户服务等。 6. 基础模型领域竞争刚开始,如 OpenAI、Google、Cohere 等公司,以及新兴的开源选项和共享神经网络模型的社群。 7. 基于 LLMs 服务或训练 Transformer 模型,诞生涉及多个行业的新应用。 8. 进入多模态灵活转换的新时代,实现文本、图像、音频、视频等多模态相互理解和转换。 9. 人类劳动形式“软件化”,复杂劳动被抽象为可调用的软件服务。 10. AI 行业目前亏损,商业化进程有待提升。 11. 云厂商是产业链中的“链主”。 12. 头部 AI 应用中,创意工具仍占最大比重,To P 应用市场潜力大,ToB 应用发展路径复杂,ToC 应用面临挑战。 13. Copilot 和 AI Agent 是 AI 应用的主要技术实现方式。 14. 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,中国 AI 公司积极出海。
2025-04-01
最好的AI学术文献搜索软件?
以下是一些较好的 AI 学术文献搜索软件: 1. Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 此外,在论文写作和课题研究中,还可以利用其他 AI 工具辅助,如: 1. 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可进行重写和摘要。 2. 数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 在教学中,Claude 和 Gamma.app 这两个工具可以帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。使用 Claude 时,可以通过对话解决如学术网站条件搜索等问题。
2025-04-01
北京大学的deep seek使用手册
以下是为您找到的与北京大学的 DeepSeek 相关的使用资料: 《》讲座讲解了直接使用 DeepSeek 的三种方法,还分享诸多提示词技巧,如真诚直接、巧用通用公式等。在应用场景方面,DeepSeek 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。讲座为人们理解和运用 DeepSeek 提供了全面指导,助力大家借助该技术提升工作、学习和生活效率。 此外,全球数据资产理事会发布的《》也可能对您有所帮助。
2025-03-04
deepseek学习手册
以下是关于 DeepSeek 的相关学习资料: 研究报告和手册: 《 《》 《》中文翻译版 华西证券:《》 中信建投:《》 来觅研究院:《》 关于 DeepSeek 的使用分享: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 提示词让 DeepSeek 能力提升: 效果对比:用 Coze 做了个小测试,可对比查看 使用方法: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-03-01
北大deepseek使用手册
以下是关于北大 DeepSeek 的相关使用资料: 全球数据资产理事会:《》 清华大学新闻与传播学院新媒体研究中心出品的《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法。 北京大学:《》讲座讲解了直接使用 DeepSeek 的三种方法,还分享诸多提示词技巧,如真诚直接、巧用通用公式等。在应用场景方面,DeepSeek 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。
2025-02-28
deepseek 自学手册 PDF 版有吗
以下是关于 DeepSeek 的相关资料: 同时还有 DeepSeek 的论文资料: 另外,关于 DeepSeek 深度推理+联网搜索目前断档第一的相关内容: DeepSeek 的特点与优势包括: 推理型大模型:核心是推理型大模型,通过理解用户真实需求和场景提供答案,不需要用户提供详细步骤指令。 更懂人话:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。 深度思考:回答问题时能够进行深度思考,而非简单罗列信息。 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 更多提示词技巧请查看
2025-02-25
claude使用手册
以下是关于 Claude 使用手册的相关内容: Anthropic 公司在 AI 领域表现出色,其最新最强的 Claude 3.5sonnet 的内置提示词公开在用户手册中,还会在 X 上主动通知有新内容可学。Claude 用户手册包含整整 10 个章节的“提示工程”指南,堪称赛博菩萨。它不仅单独维护了提示库,归纳了商业、个人任务场景中的高可用提示词,还从提示工程的 CoT 方法论,到提示库,再到直接做了个提示生成器,手把手接引、度化全球提示词爱好者。甚至作为一家不向大陆提供服务的公司,Anthropic 还准备了用户手册的汉化版本。 为方便您学习,以下是相关直达链接: Claude 用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 提示库:https://docs.anthropic.com/en/promptlibrary/library Claude 官方提示词生成器:https://console.anthropic.com/dashboard 此外,在使用 Claude 表格时,您可以构建表格,使每一行包含不同指令以替换{{INSTRUCTIONS}}占位符,从而同时生成多种类型的重写。 如果觉得不错,不妨随手点个赞、在看、转发三连,这将对作者有很大帮助。谢谢阅读!
2025-02-24
清华出品的deepseek应用手册在哪里下载
清华出品的 DeepSeek 相关应用手册的下载链接如下: 清华大学沈少阳:《 北航&清华大学:《 《 其它一些报告发布在 。
2025-02-20
RAG实战教程推荐
以下为您推荐一些 RAG 实战教程: 1. 【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有“小白”讲透 RAG 的实例教程(上篇): 介绍了常见的错误场景,如回答不准确、报价错误、胡编乱造等,强调了优化 AI 准确回答的重要性,并引出 RAG 概念。 讲解了基础概念,包括优化幻觉问题和提高准确性需要了解从“问题输入”到“得到回复”的过程,并针对每个环节逐个调优。 阐述了检索原理,包括问题解析阶段通过嵌入模型将问题文本转化为向量,知识库检索阶段比较向量选择相关信息片段,信息整合阶段构建融合全面的信息文本,大模型生成回答阶段将整合后的信息转化为向量输入大语言模型生成回答。还通过实例进行了详细说明,如知识库检索部分的向量化、优化问题、向量检索、抽取内容块等,以及大模型对话部分。 2. 开发:LangChain 应用开发指南 不用向量也可以 RAG: 以餐饮生活助手为例展示了基于结构化数据来 RAG 的实战方法,包括给出用户提问和回复的示例,以及餐饮生活助手 RAG 的代码实战。 介绍了实现餐饮生活助手 RAG 的 Langchain 代码实战需要完成的步骤,如定义餐饮数据源,将餐饮数据集转化为 Langchain 可识别和操作的数据源并注册到 Langchain 中;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源、生成答案并输出给用户。
2025-04-01
RAG 开发实战
以下是关于 RAG 开发实战的详细内容: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成质量和准确性。其基本流程为:首先,用户给出输入,如问题或话题,RAG 从数据源中检索相关文本片段(称为上下文);然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),此输入通常包含提示,指导模型生成期望输出(如答案或摘要);最后,从大模型输出中提取或格式化所需信息返回给用户。 以餐饮生活助手为例进行 RAG 的 Langchain 代码实战,需完成以下步骤: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源(如数据库、文件、API 等),注册到 Langchain 中,并提供统一接口和方法,方便 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,代理管理器可让开发者定义不同 LLM 代理及其功能逻辑,并提供统一接口和方法,方便用户与 LLM 代理交互。
2025-03-20
我需要的是学习目录,比如 基础--专项---实战等路径
以下是为您提供的 AI 学习目录: 基础部分: 根据电脑硬件和自身财力选择合适的开始方式,包括本地部署(M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑)、在线平台(在线出图和云电脑),不建议一开始就配主机。 熟练使用文生图、图生图,具备一定逻辑思考和推理能力。 掌握数学基础(线性代数、概率论、优化理论等)和编程基础(Python、C++等)。 专项部分: 建炉,针对不同炼丹方式提供炼丹工具的安装教程。 数据集预处理、模型训练以及模型调试及优化。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 实战部分: 通过真实业务场景的项目案例,如研报生成、旅游搭子、即拍即搜等积累实战经验。 模型部署:模型优化、模型服务等。 请注意,以上内容仅供参考,您可以根据自身需求和实际情况进行调整和学习。
2025-03-17
AI产品经理实战学习
以下是为您提供的关于 AI 产品经理实战学习的相关内容: 北京分队中从事相关工作或有相关经验的人员包括: 枫 share:产品经理,熟悉 ChatGPT,写过 prompt,使用过 SD、MJ 但有待深入学习,用 PR、剪映剪辑过多个视频和播客音频,正在找 AI 方向的产品岗位,坐标海淀(北五环)。 行远:产品经理,熟悉 prompt,部署过大模型、绘图项目,使用 Midjourney、sd、pika、suno 等 AI 创作工具,期待学习和实战案例应用,坐标朝阳。 管子:数据科学家,熟悉 prompt 创作,midjourney,runway,正在学习 stable diffusion,期待学习、打磨作品,坐标朝阳(望京和国贸)。 猫先生:算法技术出身,2022 年开始持续关注并学习 AIGC 方向,部署过大模型、绘图、视频生成等项目,熟悉 pika、runway、svd、sd、gpt4、comfyui 等工具,坐标海淀。 Andy:技术出身,刚开始学习 AIGC,部署过大模型、SD 等,写过代码调用 API,熟悉使用 ChatGPT、Kimi、coze 等,关注 AI 在教育领域的应用,坐标通州。 AI 产品经理的个人划分(仅供娱乐和参考): 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有两个路径,一个是技术研究路径,一个是商业化研究路径。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用:有一些成功落地应用的案例,如产生商业化价值。 对 AI 产品经理的要求:懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 产品经理要关注的还是场景、痛点、价值。 此外,阿里云 AI 实训营携手 WaytoAGI 讲师走进 GDC 全球开发者先锋大会,活动包括: 学练议程:2 月 21 日 09:30 12:30 通义灵码 0 基础应用开发,人人都是软件创作者;2 月 21 日 13:30 16:30 为你的 AI 应用装上眼睛;2 月 22 日 08:30 12:00 人工智能平台 PAI:DeepSeek 部署和应用实战。 分享嘉宾:张梦飞(词元映射 CEO,WaytoAGI Agent 核心创作者)、银海(AI 产品经理,WaytoAGI 社区共建者)、瑞雪(通义实验室科学家)、许键(AI 产品经理,WaytoAGI Agent 版主)。 实训福利:打卡有礼(现场分享打卡,领 AI 实训营定制周边)、学练有礼(现场提交作业,领阿里云精美好礼)。 活动地点:上海徐汇西岸艺术中心 B 馆(BW01)。感兴趣的学员可扫码参会。
2025-02-25
飞书多维表格DeepSeek实战
以下是关于飞书多维表格 DeepSeek 实战的相关信息: 共学课程安排: 【今晚 8 点】聊聊你怎么使用 DeepSeek!:共学大类为 AIagent,讲师为全体,飞书会议地址为,共学时间为 2025 年 2 月 6 日。 飞书多维表格 DeepSeek 实战:共学大类为多维表格字段捷径,讲师为王大仙,飞书会议地址为,共学时间为 2025 年 2 月 10 日。 关于 DeepSeek 的介绍: DP 模型的功能包括自然语言理解与分析、编程、绘图等。使用优势是能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本的问题。审核方法可以用其他大模型来解读其给出的内容,使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知,使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示。 Deepseek 文档可在 3 群和 4 群分享获取,也可在 v to a gi 的飞书知识库中搜索获取。介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。 相关社区动态: 2025 年 2 月 10 日,有《》DeepSeek R1 赏析分享会,专为非技术人群设计,介绍了技术亮点、未来展望及对流行谣言的澄清。 2025 年 2 月 10 日,有《》,讲述了 DeepSeek 的崛起原因、V3 模型特点及竞争策略。 2025 年 2 月 10 日,有《》,介绍了飞书多维表格与 DeepSeek R1 结合的使用方法和效果。
2025-02-12
飞书多维表格DeepSeek实战
以下是关于飞书多维表格 DeepSeek 实战的相关信息: 共学活动安排: 【今晚 8 点】聊聊你怎么使用 DeepSeek!:共学大类为 AIagent,讲师为全体,飞书会议地址为,共学时间为 2025 年 2 月 6 日。 飞书多维表格 DeepSeek 实战:共学内容为多维表格字段捷径,讲师为王大仙,飞书会议地址为,共学时间为 2025 年 2 月 10 日。 关于 DeepSeek 的介绍与使用: DP 模型的功能包括自然语言理解与分析、编程、绘图等,使用优势是能用更少的词让模型做更多事、思维发散、能给出创意思路和高级内容,但存在思维链长不易控制、可能输出错误内容等问题。审核方法可以用其他大模型来解读其给出的内容,使用时要有自己的思维雏形,使用场景包括阅读、育儿、写作、随意交流等。 Deepseek 文档可在 3 群和 4 群分享获取,也可在 v to a gi 的飞书知识库中搜索。介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 相关社区动态: 2025 年 2 月 10 日,《》DeepSeek R1 赏析分享会专为非技术人群设计,介绍了技术亮点、未来展望及谣言澄清。 2025 年 2 月 10 日,《》介绍了 DeepSeek 崛起的原因、V3 模型的特点及竞争策略。 2025 年 2 月 10 日,《》介绍了如何将飞书多维表格与 DeepSeek R1 结合提升工作效率,普通人无需编程知识也能轻松使用 AI。
2025-02-12
产品经理用的AI工具
以下是一些适合产品经理使用的 AI 工具: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 另外,北京分队中也有相关人员在产品经理领域对 AI 工具有所熟悉和应用,比如枫 share、行远等。 银海作为产品经理,用 10 个 Prompt 提示词做了产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。其产品体验地址为:https://www.pmai.cn/?utm_source=qoZaR5O ,具体介绍可查看相关视频演示: 。
2025-04-01
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici🦾在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
普通产品经理转型AI产品经理需要怎么进行
普通产品经理转型为 AI 产品经理,需要关注以下方面: 1. 技术原理: 了解思维链,谷歌 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 熟悉 RAG(检索增强生成),外部知识库切分成段落后转成向量,存在向量数据库,用户提问时段落信息会和问题一起传给 AI,可搭建企业和个人知识库。 掌握 PAL(程序辅助语言模型),2022 年的论文提出,对于语言模型计算问题,借助如 Python 解释器等工具而非让 AI 直接生成结果。 知晓 ReAct 框架,2022 年《React:在语言模型中协同推理与行动》的论文提出,核心是让模型动态推理并与外界环境互动,如用搜索引擎搜索关键字观察结果,可借助 LangChain 等框架简化构建流程。 2. 知识储备: 关注并阅读技术论文,了解技术脉络,但小白直接看有难度,可借助 AI 辅助阅读,同时要完成一定知识储备。 林粒粒呀的相关视频是很好的科普入门。 总之,转型需要对相关技术原理有深入理解,并积累足够的知识。
2025-03-28
产品经理的AI工具
以下是一些适用于产品经理的 AI 工具和相关应用场景: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com) 此外,银海分享了用 10 个 Prompt 提示词做产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。产品体验地址:https://www.pmai.cn/?utm_source=qoZaR5O 。 向阳乔木老师调研和分享了以下产品经理工作流程优化的相关内容: 1. 辅助精读论文:能帮翻译、拆解公式,分析代码等。工具:https://scispace.com 2. 写一些小脚本:写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 调研问卷设计/整理:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 竞品分析:用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据。如 DAU、用户结构、市场占比等等。 6. 解释专业名词:很多垂直领域,都有不少缩写或行业黑话,可以用 ChatGPT 解释举例、给场景说明。 另外,写完 PRD 后,可以让 GPT 从产品和研发两个视角写逻辑代码,既能发现自己产品逻辑表达问题,也能方便以后 QA 同学测试。
2025-03-27
作为储能行业的软件平台产品经理,如何将AI融入产品中;当今世界(2025年3月27日),AI会对传统行业的平台软件产品产生哪些影响
在当今世界(2025 年 3 月 27 日),AI 对传统行业的平台软件产品产生了多方面的影响。例如,在储能行业,大模型训练与推理对电力需求剧增,尤其需要稳定、低成本的大规模供电,这使得调度与储能变得关键。同时,AI 时代对能源低成本与稳定性的需求极其旺盛,核能(尤其小堆)及储能、电动车电池都将持续发展。 对于储能行业的软件平台产品经理,将 AI 融入产品可以从以下几个方面考虑: 1. 利用 AI 进行电力需求预测和优化调度,以提高供电的稳定性和效率。 2. 借助 AI 技术对储能系统进行智能管理和优化,降低电池成本。 3. 通过 AI 分析用户行为和需求,为用户提供个性化的能源管理方案。 4. 利用 AI 监测和诊断储能设备的运行状态,提前预警故障,提高系统的可靠性。
2025-03-27
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26