DeepSeek 与普通的 AI 大模型相比具有以下优势:
《[冯骥:DeepSeek,可能是个国运级别的科技成果](https://user.guancha.cn/wap/content?id=1372727?s=fwrphbios)》游戏科学创始人、黑神话悟空制作人冯骥推介了DeepSeek,称其为可能具有国运级别的科技成果。他指出DeepSeek具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有AI大模型,令人震惊。希望DeepSeek R1会让你对当前最先进的AI祛魅,让AI逐渐变成你生活中的水和电。《[中国开源,震撼世界:DeepSeek R1的变革、启示与展望](https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw)》DeepSeek R1在美国App Store夺冠,超越OpenAI的ChatGPT,成为开源AI领域的领军者。其技术实力与口碑并重,R1模型以仅27分之一的成本实现卓越表现,挑战了高价闭源模型的传统观念。创新的R1 Zero模型显示出模型思考能力的自我涌现,或将引领AGI的新方向。正如投资人Marc Andressen所言:“R1是对世界的珍贵礼物。”
就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。
Llama 3.1是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与GPT-4相抗衡。这标志首次开放模型缩小与专有前沿的差距。上图为人们关于Llama 3.1 405B与GPT,Claude的评估,win:胜Tie:平Loss:输借助AlphaGeometry,符号推理引擎得以拯救谷歌DeepMind与纽约大学团队使用符号引擎生成了数百万条合成定理和证明,利用这些数据从零开始训练了一个语言模型。AlphaGeometry在语言模型提出新构造,与符号引擎执行推理交替进行,直至找到解决方案。令人印象深刻的是,AlphaGeometry在奥林匹克级几何问题基准测试中解决了30题中的25题,接近人类国际数学奥林匹克金牌得主的表现。第二好的AI表现仅得10分。它还展示了泛化能力——例如,发现2004年国际数学奥林匹克问题中的一个具体细节对于证明并非必要“尽管受到制裁,中国LLMs在排行榜上风头正劲”由DeepSeek、零一万物、知谱AI和阿里巴巴开发的模型在LMSYS排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了SOTA。中国模型更能优先考虑计算效率,以弥补GPU访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek在推理过程中通过多头隐式注意力减少内存需求,并且改进了MoE架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像Common Crawl这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。