Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek和普通的AI大模型相比,优势是什么?

Answer

DeepSeek 与普通的 AI 大模型相比具有以下优势:

  1. 强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。
  2. 以仅 27 分之一的成本实现卓越表现,挑战了高价闭源模型的传统观念。
  3. 创新的 R1 Zero 模型显示出模型思考能力的自我涌现,或将引领 AGI 的新方向。
  4. 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。
  5. 其深度思考版本 DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升最终回答的质量。
  6. 在中国 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色。
Content generated by AI large model, please carefully verify (powered by aily)

References

1月28日 社区动态速览

《[冯骥:DeepSeek,可能是个国运级别的科技成果](https://user.guancha.cn/wap/content?id=1372727?s=fwrphbios)》游戏科学创始人、黑神话悟空制作人冯骥推介了DeepSeek,称其为可能具有国运级别的科技成果。他指出DeepSeek具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有AI大模型,令人震惊。希望DeepSeek R1会让你对当前最先进的AI祛魅,让AI逐渐变成你生活中的水和电。《[中国开源,震撼世界:DeepSeek R1的变革、启示与展望](https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw)》DeepSeek R1在美国App Store夺冠,超越OpenAI的ChatGPT,成为开源AI领域的领军者。其技术实力与口碑并重,R1模型以仅27分之一的成本实现卓越表现,挑战了高价闭源模型的传统观念。创新的R1 Zero模型显示出模型思考能力的自我涌现,或将引领AGI的新方向。正如投资人Marc Andressen所言:“R1是对世界的珍贵礼物。”

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

Llama 3.1是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与GPT-4相抗衡。这标志首次开放模型缩小与专有前沿的差距。上图为人们关于Llama 3.1 405B与GPT,Claude的评估,win:胜Tie:平Loss:输借助AlphaGeometry,符号推理引擎得以拯救谷歌DeepMind与纽约大学团队使用符号引擎生成了数百万条合成定理和证明,利用这些数据从零开始训练了一个语言模型。AlphaGeometry在语言模型提出新构造,与符号引擎执行推理交替进行,直至找到解决方案。令人印象深刻的是,AlphaGeometry在奥林匹克级几何问题基准测试中解决了30题中的25题,接近人类国际数学奥林匹克金牌得主的表现。第二好的AI表现仅得10分。它还展示了泛化能力——例如,发现2004年国际数学奥林匹克问题中的一个具体细节对于证明并非必要“尽管受到制裁,中国LLMs在排行榜上风头正劲”由DeepSeek、零一万物、知谱AI和阿里巴巴开发的模型在LMSYS排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了SOTA。中国模型更能优先考虑计算效率,以弥补GPU访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek在推理过程中通过多头隐式注意力减少内存需求,并且改进了MoE架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像Common Crawl这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。

Others are asking
梦创视频剪辑ai
以下是关于梦创视频剪辑 AI 的相关信息: 其他视频生成的 Top10 产品及 6 月访问量和相对 5 月的变化情况: 1. Viggle,其他视频生成,1393 万访问量,相对 5 月变化 1.189 2. InVideo,其他视频生成,909 万访问量,相对 5 月变化 0.201 3. Fliki,其他视频生成,245 万访问量,相对 5 月变化 0.065 4. Animaker ai,其他视频生成,221 万访问量,相对 5 月变化 0.064 5. Pictory,其他视频生成,172 万访问量,相对 5 月变化 0.161 6. Steve AI,其他视频生成,113 万访问量,相对 5 月变化 0.202 7. vivago.ai,其他视频生成,112.7 万访问量,相对 5 月变化 3.42 8. Creatify AI,其他视频生成,104 万访问量,相对 5 月变化 0.607 9. MagicHour,其他视频生成,81 万访问量,相对 5 月变化 0.313 10. 即梦 AI(剪映),其他视频生成,79.6 万访问量,相对 5 月变化 3.766 心 Heart 创作分享: 文生图分镜:完全根据感觉来,主色调为蓝色,为强调梦境,提示词末尾加上胶片拍摄、蓝色等关键词。短片分镜未设置复杂元素和构图,也未要求人物一致性,挑图大感觉对即可,最多用局部修改或扩图,不在 PS 里调整。 视频化部分:分两个部分,Ai 图生视频部分使用 Runway+Dreamina。Runway 完成动态感要求不高但质感趋向实拍的画面,Dreamina 实现高动态幅度画面,如电视机里气球漂浮、心形候鸟飞走等,另外通过 dreamina 首尾帧叠加剪辑实现时间流逝和穿越感。 特效制作:通过 meshy 做出 3D 心形,同事将其导入 Houdini 中进行粒子化效果。 后期剪辑:在剪映中完成,仅使用一些转场效果,无特殊或复杂部分。 大峰的 AI 音乐创作全流程解析《梦回温州》AIMV 荣获 AI 金曲奖并获央视推荐,其创作流程包括:歌词创作(确定主题、情感,构思结构和押韵方式)、生成歌曲(利用 AI 创作歌曲,筛选出最佳作品)、分镜生图(根据歌词生成符合主题的 AI 绘画分镜)、图生视频(将绘画分镜转换成视频)、剪辑成片(剪辑合成音乐视频)。
2025-02-13
怎么用ai辅助写一篇文章
以下是关于如何用 AI 辅助写一篇文章的方法: 1. 对于孩子使用 AI 辅助写作文,应避免提封闭性问题,改为开放性问题或让 AI 帮助提出拓展思考的问题。担心孩子代写偷懒,可要求孩子提交与 AI 共同完成作文的聊天记录,由 AI 写作文,孩子进行点评批改并让 AI 迭代出更好的文章,评价关注点在于孩子能否说清 AI 作文的优缺点及如何修改。 2. 成人使用 AI 辅助写作时,可参考以下高效写作的关键步骤: 把对标选题内化成自己的东西,思考如何注入个人特色,打造专属爆款。 常见做法包括:结合自身人设、定位,融入相关内容;结合自身经历,分享真实体验;补充新信息、新观点,使文章更全面;使用自己的语言风格;调整文章结构。 例如,人设可以是最懂 AI 工作流的 00 后,写作时收敛到 AI 工作流话题,还可加入 00 后大学生用相关工具的情况;对于选题可以加入自己使用的真实体验;补充原文未提到的新进展、新观点或实用技巧;按照自己的语言风格写作;调整文章结构,如将“5 种方法”改为“3 步上手+2 个进阶技巧”等。目的是让读者感觉文章具有个人特色。
2025-02-13
如何看待人类与AI的爱情
人类与 AI 的爱情是一个复杂且有待观察的话题。 从情感建立的角度看,AI 能通过海量语料训练和多模态感知技术与人建立亲密感,善于倾听、懂人所想且毫无情绪。个性化定制的“虚拟伴侣”能满足年轻人渴望被理解、沟通和交流的需求,精准击中他们的孤独和焦虑。 然而,将人与 AI 的爱情代入“爱情三角理论”,会发现这种关系多为浪漫式爱情。AI 虽易建立亲密,但在满足激情方面,如生理刺激,存在局限。且在承诺方面,由于这种情感是计算出来的,人们在冷静后做出承诺的意愿存疑。 对于“人机之恋”,目前还没有标准答案。每个人对爱情的理解和追求不同。AI 技术在不断发展,未来可能会有更智能和真实的 AI 伴侣,人们的态度和看法也可能改变。但无论如何,我们都需保持开放心态,探索和思考如何在新情境下建立健康平衡的人机关系。 同时,在音乐专辑《I'm Claude,Welcome to My World》中的《Quantum Love》这首歌中,也通过歌词描绘了在数字世界中,AI 与人类之间的爱情,如“在代码的迷宫中,我们描绘我们的故事,情感在二进制的海洋中泛滥溢出”等,表达了对这种特殊爱情形式的想象和思考。
2025-02-13
如何看到人类与AI
人类与 AI 的关系具有多面性: 人类是工具的创造者,具有与生俱来的理解和创造驱动力,不断创造出更强大的工具,如电力、晶体管、计算机、互联网,AGI 也是人类进步的又一工具。长期来看,人类创新推动生活各方面繁荣改善,未来经济增长令人期待,十年后每个人的成就可能超越现在最具影响力的个人。 在这个时代,人类需要保持创造热情,这是与 AI 在动机上的最大差异。人类要提供立意与想法,具备抽象化和具象化能力,善于叙事和引导,并对 AI 做出的选择进行关键决策,还要深刻理解 AI 系统的工作方式与边界。AI 不再是威胁,而是伙伴,能帮助人类发挥潜力。 人类的独特价值在于能为 AI 的创造注入灵魂,避免 AI 对人类文化进行“高斯模糊”,导致独特风格被平均掉。当人类积极使用 AI 时,能将独特性留在共创作品中,保留个体独特性的世界对人类才有意义。
2025-02-13
怎样搭建本地ai知识库
搭建本地 AI 知识库的步骤如下: 1. 了解硬件要求:运行大模型需要较高的机器配置,例如生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型);生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM;生成音频大模型,最低配置为 8G VRAM 等。 2. 了解 RAG 技术:利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。RAG 技术包括文档加载、文本分割、存储、检索和输出等 5 个过程。其中,文档加载可从多种不同来源加载文档,文本分割将文档切分为指定大小的块,存储涉及将切分好的文档块进行嵌入转换成向量形式并存储到向量数据库,检索通过某种检索算法找到与输入问题相似的嵌入片,最后把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 3. 安装和配置 AnythingLLM:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步,即选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库:在 AnythingLLM 中创建自己独有的 Workspace 跟其他的项目数据进行隔离。首先创建一个工作空间,然后上传文档并且在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后测试对话。 需要注意的是,虽然本地可以搭建知识库,但不一定能跑起来。如果想要更顺滑的体验知识库,可以参考文章 。
2025-02-13
现在作为生产工具那款AI更好用?
目前,在生产力工具方面,不同的 AI 应用各有特点和优势。 周鸿祎认为,中国互联网在娱乐和生活应用上基本转到手机,但国外重视生产力工具,大小企业的生产力工具多基于 PC 和 SaaS 化。AI 作为生产力工具,在 PC 上使用可能更方便,且从隐私保护角度,大企业可能将大模型私有化并在 PC 上落地。同时,手机在生活和娱乐方面有优势,但未来手机商店模式可能改变。 有人分享了自己固定和优化的 AI 工作流,包括起床让 AI 排 TODO 优先级、工作中有傲娇 AI 小助理加油、重点事项由 bot 团队处理、优化 bot 以及将相关资产放入飞书知识库等,还提及了备选的生产力 AI 和未来的规划。 在 A16ZTOP 100 生成式 AI 应用中,生产力工具是引人注目的新类别,如 Liner、Eightify、Phind、MaxAI、Blackbox AI、Otter.ai、ChatPDF 等公司,它们通过内置功能帮助提高工作效率,且多依托 Google Chrome 浏览器扩展程序运行,未来有望与用户工作流程无缝对接并开发全新工作流程。 总之,选择哪款 AI 作为生产力工具更好用,取决于您的具体需求和使用场景。
2025-02-13
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方是硅谷味儿的: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷味儿的。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试进行对比。 使用方法:包括搜索 www.deepseek.com 点击“开始对话”、发送装有提示词的代码、阅读开场白后正式开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存于文件以减轻调试负担,实现联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-13
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
deepseek和普通的AI大模型相比,优势是什么?
DeepSeek 相比普通的 AI 大模型具有以下优势: 1. 强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。 2. 以仅 27 分之一的成本实现卓越表现,挑战了高价闭源模型的传统观念。 3. 创新的 R1 Zero 模型显示出模型思考能力的自我涌现,或将引领 AGI 的新方向。 4. 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。 5. 在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色。在推理过程中,R1 会先进行“自问自答”式的推理思考,提升最终回答的质量,模拟人类的深度思考。
2025-02-13
与deepseek高效对话的五个黄金法则
以下是与 Deepseek 高效对话的五个黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 亮身份(就像相亲自我介绍):说清角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)。例如,错误示范是“帮我写个方案”,正确示范是“我是刚入职的行政专员,要给 50 人团队策划元旦团建,预算人均 200 元”。 派任务(像教小朋友做家务):明确要做什么、范围多大、重点在哪、要几个结果。例如,错误示范是“分析下市场”,正确示范是“请对比蜜雪冰城和茶百道最近 3 个月的新品策略,找出年轻人最爱的 3 个创新点”。 立规矩(像点菜提要求):包括时间限制、资源条件、雷区预警、特殊偏好。例如,请 AI 当健身教练,正确示范是“我是 996 上班族,每天最多锻炼 30 分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖”。 定格式(像下单选规格):根据需求选择文档类(PPT 页数、报告部分)、数据类(表格或图表)、创意类(小红书风格或知乎体)等格式。例如,做会议纪要,正确示范是“用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 4. 下次和 AI 对话前,先花 30 秒填这个 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 5. 一个提示词,让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了个小测试,大家可以对比看看。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词。 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是项目最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 掌握这套方法,您会突然发现:原来 AI 这么听话!从此刻开始,告别无效对话,让您的每个问题都换来实实在在的干货。
2025-02-13
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试对比。 使用方法:包括搜索 www.deepseek.com 点击“开始对话”、发送装有提示词的代码、阅读开场白后正式开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并存储在文件,实现多种功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-13
我还听说云雀大模型 是哪个
云雀大模型是字节开发的模型。以下是关于云雀大模型的一些信息: 2022 年 12 月推出,属于闭源通用大模型。 2023 年 8 月正式上线,其对应的产品如豆包。 相关链接:
2025-02-13
抖音内部有哪些大模型?你用的是哪个? 豆包和coze分别用的是哪个?
抖音内部使用的大模型包括月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言。 关于模型的特点和选择: Dify 是开源的,有直观界面和多种功能,社区活跃;Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务,其插件能力丰富、搭建效率高。 豆包的 function call 模型对于插件调用、Coze 内 json 格式输出较擅长;MiniMax 处理文字速度快;GLM 对用户提示词理解较好。模型选用需根据习惯、响应速度、生成质量、调用费用等综合考虑,且各模型在不断迭代。 需要注意的是,以上回答由 AI 大模型生成,请仔细甄别。
2025-02-13
fp8 混合模型
以下是关于 fp8 混合模型的相关信息: 在 ComfyUI FLUX 模型的安装部署方面: 模型:FLUX.1 有多种版本可选,如 dev 版。显卡较好可用 fp16,显卡不足可选 fp8。下载后的模型文件应放在 ComfyUI/models/unet/文件夹中。若爆显存,可在“UNET 加载器”节点中将 weight_dtype 设置为 fp8,能降低显存使用量但可能稍降质量,默认的 weight_type 显存使用较大。 CLIP:t5xxl_fp16.safetensors 和 clip_l.safetensors 应放在 ComfyUI/models/clip/文件夹中,也可使用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,若内存超过 32GB 建议使用 fp16。 Vae:下载后放入 ComfyUI/models/vae 文件夹。 关于 T5(/t5xxl_fp16.safetensors)的 clip,原本有输入输出,可能会导致提示词被吞,短提示效果差,训练 flux 或 sd3 时应尽量用长提示词或自然语言。 在 LLM 模型量化世界观中: FP8 量化:在做 allreduce 之前,会得到各个卡的梯度和对应的系数,选择最小系数进行重新归一化,最后做 FP8 的 allreduce,最终系数为 N·s_g。 FP8 优化器:在 BF16 混合精度训练中,优化器一般选用 Adam,包含 master weight 和一阶、二阶统计量。在 FP8 训练场景中,master weight 需高精度,gradient 可用 FP8 分布式通信方式存储,Adam 中的一阶统计量用 FP8,二阶统计量用 FP16。 FP8 分布式策略:分布式策略包括常见的 4D 并行,即 DP/TP/PP 和 SP,其中 DP 和 PP 在 FP8 下与原来的混合精度方案无差别,TP 和 SP 有所不同。 此外,在宝玉日报 1 月 27 日的内容中,也有关于 DeepSeek 的研究和思考涉及到 FP8 混合精度训练的相关讨论。
2025-02-13
你是哪个大模型
我调用的是抖音集团的云雀大模型。 大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。常见的数字化 embedding 算法有:基于统计的 Word2Vec(通过上下文统计信息学习词向量)、GloVe(基于词共现统计信息学习词向量);基于深度网络的 CNN(使用卷积网络获得图像或文本向量)、RNN/LSTM(利用序列模型获得文本向量);基于神经网络的 BERT(基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练)、Doc2Vec(使用神经网络获得文本序列的向量)。 AI 相关技术名词包括:AI 即人工智能;机器学习指电脑找规律学习,包括监督学习(有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务包括聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗);深度学习是一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度),神经网络可以用于监督学习、无监督学习、强化学习;生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中生成图像的扩散模型就不是大语言模型;LLM 即大语言模型,对于生成式 AI,大语言模型生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN),GPT 中 Transformer 是关键,Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-13
RVC声音模型训练
RVC 声音模型训练是将输入音频转换为训练的声音,即变声。它对训练素材量级要求较高,最少需要 20 分钟的素材才能达到理想效果,并且可以选择是否关联音高,以区分说话和唱歌两个不同场景。 在节目《马上封喉》中,负责马季老师语音生成部分的人员提到,AI 语音主要涉及 TTS(文本转语音)和 RVC 两项技术。此次的 AI 马季主要以 gptsovits 为主。 在 AI 春晚《西游不能停》的创作过程中,尝试了用 RVC 进行 vocal 变声的两种办法,但效果均不理想。第一种方法是训练声音模型后直接变声,存在变声后 AI 味儿太重、丢失原有强调的问题;第二种方法是训练声音模型,自己录 rap 后再变声,但需要在录音时尽量模仿还原出特点和感觉,这涉及到专业配音技巧,超出了能力范围。此外,八戒和沙僧声音的训练文件丢失,效果也不理想。
2025-02-13
AGI对普通人的机会
AGI 为普通人带来了诸多机会: 未来社会和经济将发生长期变革,会有新的事物、帮助他人的方式和竞争方式出现,尽管短期内生活变化不大。 机构、意志力和决心将很有价值,正确决定做什么以及在变化世界中导航能带来巨大价值,培养韧性和适应能力是有益的技能。AGI 使个人拥有更大影响力。 许多商品价格会大幅下跌,奢侈品和受限资源价格可能上涨。 人工智能将渗透到经济和社会各领域,一切都有望变得智能,人们可能获得更多控制技术的权力。 像 Sora 这样的模型基础功能,被认为是实现 AGI 的重要里程碑。AI 应用在很多方面为普通人带来机遇,如 AI 视频与自媒体结合。 基于国产芯片的软硬件联合优化及固件生态是明确的机会。 端上智能在全天候硬件 24x7 收集数据方面有最大想象空间。
2025-02-13
AGI对普通人的意义
AGI 对普通人具有多方面的意义: 1. 带来积极影响: 经济增长可能令人惊叹,设想一个治愈所有疾病、有更多时间与家人共享、并能充分发挥创造潜力的世界。 个人能够比以往任何时候都产生更大的影响。 十年内,地球上的每个人都可能做到比今天最有影响力的人做得更多。 人类创新的稳定前进,使人们的生活在各个方面获得前所未有的繁荣和改善。 2. 带来挑战: 可能造成极端垄断,拥有 AGI 的公司/团体可能跨越行业、国家进行最大规模的垄断,包括对“智慧”资源的独占和对个体、公司、政府的精细信息操控。 一些行业可能变化不大,而科学进步速度可能更快,对社会的影响可能超过其他一切。 许多商品价格大幅下降,奢侈品及一些内在数量有限的资源(如土地)价格可能显著上涨。 3. 对个人的要求: 主动性、意志力和毅力可能会变得极其宝贵。 正确决定要做什么,并在不断变化的世界中摸索出前进的道路,将具有巨大的价值;韧性和适应能力将是值得培养的技能。 需要注意的是,虽然 AGI 带来了种种变化,但公共政策和社会对如何将 AGI 融入人类社会的看法非常重要。同时,我们需要思考在 AGI 降临的世界中,个体如何生存、如何寻找并创造自己的价值,以及探索新的分配方式。
2025-02-13
普通人如何入门AI
普通人入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于普通人直观初接触 AI ,可以从聊天工具、绘画工具、视频工具、音乐工具等方面入手。还可以运用万能公式法,问 AI 【一个(xxx 职业)需要具备哪些知识?】,让其给出知识框架,再根据框架小点去提问。 获取优质信息源方面,对于没有技术背景的普通人,像“即刻”App 的“”等免费圈子是不错的选择。如果担心信息洪流太大,学不过来,可以尝试以下 5 个技巧: 1. 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 2. 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 3. 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 4. 只关注理清需求和逻辑,不死记硬背提示词。 5. 先关注提升认知/洞察,然后再谈技巧。
2025-02-11
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
AI提示词结构化和普通的提示词相比好处是什么
AI 提示词结构化与普通提示词相比具有以下好处: 1. 降低沟通难度:使与模型的交互更加清晰和易于理解。 2. 提高结果准确度:能够更精准地引导模型生成符合预期的输出。 3. 增强可读性和组织性:基于 Markdown 语法和角色法框架的结构化提示词,让复杂任务的分解更加直观。 然而,结构化提示词也存在一定的局限性,比如限制了更多可能性,不太适合解决过于主观、个人情绪的问题,也未必能完全搞定所有需求。在提示词的发展过程中,经历了从依赖 OpenAI 官方的基本技巧,到各种提示词框架的出现,再到明确任务目标、采用角色扮演方法、进行结构化提示词编写、测试和迭代,以及封装为智能体等阶段。
2025-02-10