Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai绘画学习

Answer

以下是关于 AI 绘画学习的相关内容:

二师兄的 AI 启蒙之路(2024 年)

  • 2024 年 1 月:购买 4070TiSuper 显卡和 4K160 显示器,为游戏做准备。
  • 2024 年 2 月:在七彩虹售后群获得 AI 绘画的 SD 秋叶安装包和教学视频,开始学习。
  • 2024 年 3 月:啃完 SD 的所有教程,开始炼丹,包括人脸、画风、风景、景观、建筑等,但因图片数据集质量一般且多为公司项目案例图片,lora 仅供自嗨。
  • 2024 年 4 月:与小伙伴探讨 AI 变现途径,尝试用 GPT 和 SD 制作图文故事绘本、小说推文项目,过程中练了一些绘本风格的丹。
  • 2024 年 5 月:因工作变动,电脑运回家,开始无硬件支持的 AI 学习之路,加入 Prompt battle 社群,学习 Midjourney,打磨文生图提示词学习。

AIGC 法律风险研究报告

  • 以 AI 绘画为例,其运行机制有三层:基础逻辑层能完成风格迁移;数据库层需要大量“喂图”进行深度学习;创造性输出层能产出符合文字描述且有美学逻辑的图像。
  • 在第一个阶段中,AI 绘画服务提供者爬取大量数据以供后一阶段使用。美国版权法将获取使用网络数据的行为纳入合理使用范畴,我国虽未明确规定“转换性使用”概念,但司法实践中有参考适用案例。但针对 AI 爬取网络数据的行为,不符合我国《著作权法》中合理使用规定,且举证困难,若认定为侵权行为不利于人工智能行业发展。

如果让我推荐一门 AI 课

  • 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。
  • 基础操作课:涵盖 AI 绘画通识课、AI - 摄影虚拟的真实、AI - 电影 - 穿越的大门等内容。
  • 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。
  • SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。
  • ChatGPT 体系课程:有 ChatGPT 基础、核心 - 文风、格式、思维模型等内容。
  • ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。
  • 应对 SORA 的视听语言课程:涉及通识 - 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。

免费课程机会:可以参与 video battle,获胜者可获得课程奖励,包括冠军 4980 课程一份、亚军 3980 课程一份、季军 1980 课程一份,入围可获得 598 野神殿门票一张。扫码添加菩萨老师助理可了解更多课程信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

二师兄的AI启蒙之路(2024年)

我叫二师兄,来自上海,典型的80后,房地产行业从业二十年,计算机零基础。兴趣爱好:悠悠球、数码产品、游戏、音乐、手办、乐高、汽车2024年[heading1]一月[content]4070TiSuper发售,我买了显卡配了4K160显示器,备战2024年8月发售的国产3A大作黑悟空和2025年发售的GTA6[heading1]二月[content]过年后,在七彩虹的售后群,有个老哥在分享用AI绘画的心得,问他要了SD秋叶安装包,下载了教学视频,自此迈出AI学习的第一步[heading1]三月[content]啃完SD的所有教程,秉着不浪费显卡资源的原则开始炼丹,人脸、画风、风景、景观、建筑的丹练了一些,不过因为图片数据集的质量一般,且很多是公司里的项目案例图片,所有lora仅供自嗨[heading1]四月[content]与小伙伴探讨AI变现的途径,尝试用GPT和SD制作图文故事绘本、小说推文的项目,因组员各自忙于事业而不了了之。但过程中练了一些绘本风格的丹。[heading1]五月[content]因公司岗位可能有调动,提前把电脑运到武汉的家里,但最终工作地点仍在昆明,开启了长达五个月无硬件支持的AI学习之路。有幸加入到Prompt battle社群,开始了Midjourney的学习,这一阶段打磨了另一种形式的文生图提示词学习。

2024AIGC法律风险研究报告(更新版).pdf

以AI绘画为例,其运行机制有三层:第一层是基础逻辑层。AI绘画能完成风格上的迁移。第二层是数据库。在第一层基础逻辑的基础上,AI就需要大量“喂图”来进行学习和总结,获得不同的图像参数范例,这一步就是所谓的“深度学习”过程。第三层是创造性输出。这一阶段最能体现出AI的创作性,其能产出符合文字描述且具有一定美学逻辑的图像。24AIGC法律风险研究报告在第一个阶段中,AI绘画服务提供者需要爬取大量数据,以供后一阶段AI深度学习使用。在美国版权法中,通过判例将获取使用网络数据的行为纳入了合理使用的范畴,认为此种行为的使用目的不同于原作品,在原作品基础上增加了价值、创作出新的理解和认识,构成转换性使用。我国《著作权法》中并未明确规定这个概念,但在司法实践中,也已经出现法院参考适用“转换性使用”的案例,如在美影厂诉新影年代公司等“葫芦娃”及“黑猫警长”著作权侵权纠纷案中,10二审法院认为涉案电影海报适当应用具有时代代表性的少儿动画形象的美术作品,不再是单纯展现涉案作品的艺术美感,其价值和功能已发生转换,且转换性程度较高,属于转换性使用,构成合理使用。但是针对于AI爬取网络数据的行为,其实际上并不符合我国《著作权法》中对于合理使用的规定,并且对该行为的举证也存在极大的困难,但这一抓取数据的行为作为大部分AI应用的前提,如果死板地将其认定为侵权行为,不利于整个人工智能行业的发展。

如果让我推荐一门AI课

预习周课程:包括AI绘画电脑配置要求、高效AIGC创意者的数字人工具包、SD插件安装方法、画静为动的AIGC视频制作讲解等。基础操作课:涵盖AI绘画通识课、AI-摄影虚拟的真实、AI-电影-穿越的大门等内容。核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi体系课程:包括SD基础部署、SD文生图、图生图、局部重绘等。ChatGPT体系课程:有ChatGPT基础、核心-文风、格式、思维模型等内容。ComfyUI与AI动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对SORA的视听语言课程:涉及通识-欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。目前的课程内容比我之前学的丰富了很多!!!我都想回炉重造了。[heading4]免费课程机会👇[content]如果你想要免费获得这门课程,可以来参与video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的video battle的评委野菩萨老师都非常严格,需要寓意深度审美并存。🥇冠军奖励:4980课程一份🥈亚军奖励:3980课程一份🥉季军奖励:1980课程一份🎫入围奖励:598野神殿门票一张人字头企业,讲究社会责任。野菩萨的课程非常值得推荐,无论你是AI小白还是深入学习者,这门课程都能给你带来帮助。希望大家在AI学习的道路上找到适合自己的课程,不断提升自己💪。扫码添加菩萨老师助理,了解更多课程信息让我们一起在“通往AGI之路”社区学习成长,探索AI的无限可能吧!

Others are asking
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
AI 绘画提示词
以下是一些 AI 绘画常用的提示词: 画面构图方面: 人物拍摄:Chest Shot、headshot 爆头。 视角:Wideangle view 广角镜头、CloseUp的横截面图、cinematic shot 电影镜头。 相机相关:canon 5d,1fujifilm xt100,Sony alpha 相机型号焦段光圈。 其他:scenery shot 风景照、bokeh 背景虚化、foreground 前景、background 背景、Detail Shot。 画面氛围和情绪方面:moody 暗黑的、happy 鲜艳的,浅色的、dark 黑暗的、epic detail 超细节的、Brutal 残酷的,破碎的、dramatic contrast 强烈对比的、hopeful 充满希望的、anxious 焦虑的、depressed 沮丧、elated 高兴地、upset 难过的、fearful 令人恐惧的、hateful 令人憎恨的、happy 高兴、excited 兴奋、angry 生气、afraid 害怕。
2025-02-18
AI绘画课程
以下为您推荐的 AI 绘画课程: 【野菩萨】课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:参与 video battle,获胜者可获得课程奖励,包括冠军 4980 课程一份、亚军 3980 课程一份、季军 1980 课程一份,入围奖励 598 野神殿门票一张。 扫码添加菩萨老师助理,了解更多课程信息。 【Stable Diffusion 零基础入门宝典】课程: 作者从事平面设计行业,基于对 Stable Diffusion 的学习和研究,开发了这套课程。 课程初衷是为刚入门或想了解 SD 的小伙伴做全面梳理,因为新人面对众多内容往往不知所措。 课程特色暂未提及。 SD 新手视频教程: 章节教学视频: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet!
2025-02-17
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
Ai绘画,两个月入门
以下是为您提供的 AI 绘画两个月入门的相关内容: 首先,了解一下 AI 绘画的逻辑。就像您学习画画临摹梵高的作品一样,AI 绘画也是通过学习大量的美术风格作品来生成类似风格的作品。例如 Stable Diffusion ,您花四十年学习的梵高风格相当于它的大模型——Checkpoint 。人们将成千上万种美术风格作品训练成模型放入 AI 中,您想画出满意的作品,首先要选对合适的大模型。大模型可以在 C 站(https://civitai.com/)下载,但需要科学上网。 有位叫二师兄的人在二月接触到 AI 绘画,三月啃完 SD 的所有教程并开始炼丹,四月探讨 AI 变现途径,五月因工作变动但仍坚持学习,加入 Prompt battle 社群学习 Midjourney 。 另外,有人分享自己的经历,22 年 12 月学习 AI 绘画,直到最近因公司业务需求重新捡起,短时间内出过上千张图支持多个业务团队。如果想让人主动学习 AI ,有效的方式是让其看到 AI 能高效完成手头工作。生成式 AI 目前还在早期阶段,为其找高价值应用场景或许能持续一二十年,行业龙头可能是最大受益者之一。
2025-02-12
如何学习ai绘画
以下是关于学习 AI 绘画的一些指导: 首先,了解 Stable Diffusion 的工作原理。这就好比学习画画,比如学梵高的风格,要先看他的画并临摹。对于 AI 绘画来说,成千上万的美术风格作品被练成一个模型放在 AI 里,比如 Stable Diffusion 的大模型——Checkpoint,您可以在 C 站(https://civitai.com/,需科学上网)下载不同风格的大模型,如真实系、二次元、游戏 CG 风等。选对合适的大模型是画出符合心意作品的关键。 其次,要学会与 AI 对话,提示词(Prompt)非常重要。提示不是自然语言的简单应用,而是一种特殊的语言应用,它是实现人机交互的形式之一。 另外,还可以参考他人的学习经历,比如二师兄在 2024 年的学习过程。他从二月开始接触 AI 绘画,三月啃完 SD 的教程并开始炼丹,四月尝试 AI 变现途径,五月在没有硬件支持的情况下加入 Prompt battle 社群学习 Midjourney。 总之,学习 AI 绘画需要了解原理、选对模型、掌握提示词技巧,并不断实践和探索。
2025-02-12
我希望你向我推荐一个AI培养我画画的兴趣爱好。我目前23岁,无任何画画基础,目前用IPA中的procrate APP绘画比较方便,我喜欢颜色鲜艳的简笔画,但是我对procrate APP并不熟悉,希望有一个AI能充当我的花花启蒙老师,带领我使用procrate APP学习简笔画
很抱歉,以上提供的内容中没有直接针对您需求的有效推荐。不过,您可以考虑以下途径: 1. 【野菩萨的 AIGC 资深课】:由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画等多个体系的知识。 2. 您还可以在网络上搜索关于 Procreate APP 以及简笔画的教学视频和教程,有很多免费或付费的资源可供选择。 希望这些建议对您有所帮助。
2025-02-10
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
想做ai产品经理如何从0到1学习ai
如果您想从 0 到 1 成为 AI 产品经理,可以按照以下步骤学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下案例: 90 分钟从 0 开始打造您的第一个 Coze 应用,了解 Code AI 应用开发教学,包括其背景、现状、证件照应用案例以及学习过程,重点熟悉桌面网页版的用户界面。 参考北京分队成员的经验,如枫 share、行远、管子、猫先生、Andy 等在 AI 领域的技能、经验、职业、兴趣爱好等方面的情况。
2025-02-18
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,并通过 LLMOps 功能持续监控和优化应用程序的性能。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速的产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 使用建议:个人研究时推荐单独使用,企业级落地项目推荐多种框架结合,效果更好。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-18