Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

DeepSeek从入门到精通

Answer

以下是关于 DeepSeek 从入门到精通的相关内容:

Content generated by AI large model, please carefully verify (powered by aily)

References

2月8日 社区动态速览

《[DeepSeek:从入门到精通](https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg)》是清华大学新闻与传播学院新媒体研究中心出品的指南。详细阐述了DeepSeek的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握AI工具的使用,提升工作效率和创新能力。

全新AI整活第六期|DeepSeek小说家

Deepseek相关资料[集合·DeepSeek提示词方法论](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink)[DeepSeek从入门到精通(20250204).pdf](https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink)[DeepSeek 13大官方提示词通俗解读,让新手也能用出高手的效果](https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink)[【今晚8点】聊聊你怎么使用DeepSeek!2025年2月6日](https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink)[Deepseek"4+1"黄金提问法——情境化](https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink)[Deepseek"4+1"黄金提问法——迭代优化](https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink)

4.4 历史更新

《[2025DeepSeek爆火详细报告:回顾DeepSeek的爆火过程](https://waytoagi.feishu.cn/record/QWIMrT其它一些报告发布在[研究报告板块](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)和[知识星球](https://t.zsxq.com/18DnZxlrl):《[DeepSeek 15天指导手册——从入门到精通](https://waytoagi.feishu.cn/record/FJuYr5qvseNuf2cjyzacF2qfnle)》《[DeepSeekV3技术报告](https://waytoagi.feishu.cn/record/WpfarfezwexmiBc5PLicJQronQc)》中文翻译版华西证券:《[计算机行业深度-Deepseek:国产AI应用的“诺曼底时刻”](https://waytoagi.feishu.cn/record/A3KJrnAFRevymkcbnUpci1f6nVf)》中信建投:《[DeepSeek R1深度解析及算力影响几何](https://waytoagi.feishu.cn/record/NKRjrU7gse9C2Acp1lpcUOA1nqh)》来觅研究院:《[机器人2024年四季度投融市场报告](https://waytoagi.feishu.cn/record/KTndr6iMZeeUBJcyzrmctmzYnLe)》

Others are asking
deepseek最近有什么新进展
DeepSeek 近期有以下新进展: 深夜发布大一统模型 JanusPro,将图像理解和生成统一在一个模型中。 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B JanusPro 是一种新型的自回归框架,通过将视觉编码解耦为独立的路径解决先前方法的局限性,同时利用单一的统一变压器架构进行处理。解耦缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性,超越了之前的统一模型,并匹配或超过了特定任务模型的性能,成为下一代统一多模态模型的有力候选者。 在编码任务中已成为社区的最爱,其组合了速度、轻便性和准确性而推出的 deepseekcoderv2。
2025-02-19
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷特色: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方就是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷味儿的。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试对比。 使用方法:包括搜索 www.deepseek.com 点击“开始对话”、发送装有提示词的代码、阅读开场白后正式开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现多种功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-19
关于deepseek的简介
DeepSeek(深度求索)是一家专注于人工智能基础技术研究的科技公司。 公司背景方面: 成立时间:2023 年 9 月。 总部:中国杭州。 定位:聚焦大模型研发与应用,致力于提供高效、安全、可控的 AI 技术解决方案。 关于其模型 DP 模型: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 此外,Deepseek 相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。
2025-02-19
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
deepseek论文
以下是关于 deepseek 论文的相关信息: 1. GPT1 到 DeepSeek R1 所有公开论文: DeepSeek 领先的(相对)开源模型实验室。 2. DeepSeek 的秘方是硅谷味儿的: 将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方是多快好省也不全面。 早在 2024 年 5 月 DeepSeekV2 发布时,因其多头潜在注意力机制(MLA)架构的创新在硅谷引发小范围轰动,V2 的论文引发了 AI 研究界的广泛分享和讨论。 3. deepseek 论文解读: 直播视频回放及相关论文下载: 技巧分享:万能提示词,可用此提示词来 DeepSeek R1。 官网的搜索不能用,一直崩溃的解决办法:可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。
2025-02-19
Deepseek与多维表格
以下是关于 DeepSeek 与多维表格的相关信息: DeepSeek 方面: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读其给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示应用。 文档分享:在 3 群和 4 群分享了相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 多维表格方面: 彭骋介绍了多维表格中 data think 的使用,演示不同服务商及模型的调用效果,提及新 R1 版本。 分享了 AI 在招聘中的应用案例。 此外,火山方舟 DeepSeek 还提供了以下信息: 申请免费额度教程。 API 使用方式包括飞书多维表格调用、Coze 智能体调用、浏览器插件调用。 上线 DeepSeek 系列模型,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。 即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。火山引擎默认提供高达 500 万 TPM 的初始限流,推理速度处于第一梯队。
2025-02-19
入门学习
新手入门学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果是入门强化学习: 1. 如果没有概率论和线性代数基础,且差不多都忘完了,可以去看一下相关课程学习一下,大约周末一天时间能搞定;如果不关注公式,这一步可先忽略。 2. 对机器学习没有基础的话,可以先看吴恩达的课程,有大致理解后,再看李宏毅的课程作为补充。如果单纯想入门学习强化学习,只需要看李宏毅课程前几节讲完神经网络那里就差不多了,这个视频课程估计要看 25 小时左右。 3. 学完之后可以跟着《动手学深度学习 https://hrl.boyuai.com/》一起动手学习学到的概念,写写代码,入门的话看前五章就好,本篇文章的很多资料也整理自这本书,大约 10 小时左右。 4. 接下来可以看看 B 站王树森的深度学习的课程,先看前几节学习强化学习的基础知识点,大约 5 小时左右。 5. 到这个阶段可能还是懵的,需要上手做点项目,可以看《动手学强化学习》这本书,已开源 https://hrl.boyuai.com/,只看到 DQN 的部分,大约十几小时。
2025-02-19
我想学习Ai入门
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-02-18
如何快速入门AI工具
以下是快速入门 AI 工具的一些建议: 1. 对于普通人来说,对 AI 最好的直观初接触有两个方面: 最低成本能直接上手试的工具是什么,自己能否亲自尝试。 现在最普遍/最好的工具是什么,能达到什么效果。 2. 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。 3. 为了让普通人更直观地马上上手,可选择以下几种工具展开说明:聊天工具、绘画工具、视频工具、音乐工具。 4. 对于超出自己理解范围内的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。 5. 在面向父母的“AI 布道”活动中发现,因“AI 工具”功能强大能做无数事情,反而在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最好方式,不论是什么人群。 6. 最后,如果想交流并一起在 AI 路上探寻,欢迎戳 。
2025-02-17
我想学 AI入门
以下是新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,入门强化学习时,可参考以下学习计划:像这个链接里面:https://github.com/ty4z2008/Qix/blob/master/dl.md 就有很多资料。在学习之前先明确自己的目的,比如以搞懂 DQN 算法作为入门目标。
2025-02-17
非计算机专业出身,怎样快速入门ai
对于非计算机专业出身想要快速入门 AI 的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于不会代码的您,20 分钟上手 Python + AI 的方法如下: 在深入学习 AI 时,许多朋友发现需要编程,变得头大。同时,各类教程都默认您会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,并使您在接下来的 20 分钟内,循序渐进的完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景: 1. 关于 Python: Python 就像哆拉 A 梦,它拥有一个百宝袋,装满了各种道具,被称为标准库。当遇到问题时,都可以拿出来直接使用。 如果百宝袋里的道具不够用,还可以打电话给未来百货,去订购新道具。在这里:打电话对应 pip 一类的工具,可以用来订购任何的道具;未来百货对应 GitHub 一类的分享代码的平台,里面啥都有。 Python 被全世界广泛使用,尤其是在 AI 领域,所以遍地是大哥。 2. 关于 OpenAI API: OpenAI 通过两种方式提供服务:其一,通过 ChatGPT,提供开箱即用的服务,直接对话即可,简单直观;其二,通过 OpenAI API,提供更加灵活的服务,通过代码调用,来完成更多自动化任务,比如全自动将本地的 1 万本小说,从中文翻译成英文。 欢迎来到“AI 企业落地应用”专栏,在这里,我们将分享 AI 技术在真实商业场景中落地应用的有趣案例故事和实战经验教训。做为铺垫和开始,这是一篇能带你快速搞懂本轮 AI 大模型革命相关核心知识信息的文章,我们将从历史到今天,从原理到应用,从产业到趋势,用尽可能通俗易懂但又不失专业严谨的方式,带你快速走入 AI 的世界,跟上 AI 大势。阅读提示:为了方便没有计算机学习背景但又热衷学习 AI 应用的伙伴更好的阅读,下面的内容可能会使用打比方、作类比的方式来让那些晦涩枯燥的知识变得更为有趣和更容易入心入脑,帮助于您在学习应用 AI 的路上走得更加顺畅和稳健,但这也势必会一定程度带来专业性上的不严谨,我们将会显性的做出标注提示,方便您识别,您可以关注文末的论文推荐导引,去了解真实的技术细节。此外,文章中可能还会涉及一些相对专业和可能超纲的知识内容,我们也将会显性的做出标注提示,告诉您这部分内容即使不懂,也完全没关系,可以放心跳过,不必焦虑。
2025-02-16
如何入门学习AI
以下是新手入门学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果您不会代码,想要在 20 分钟上手 Python + AI,可以按照以下步骤: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景知识: Python 就像哆拉 A 梦,拥有一个百宝袋,即标准库,若不够用,还可通过 pip 一类的工具从 GitHub 一类的分享代码的平台订购新道具。OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-02-15
DEEPSEEK的从入门到精通的课程
《DeepSeek:从入门到精通》是由清华大学新闻与传播学院新媒体研究中心出品的指南。该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等。同时探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。此外,文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接查看:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg
2025-02-10
DeepSeek从入门到精通
DeepSeek 从入门到精通的相关内容如下: 由清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 相关资料包括:。 2025 年 2 月的历史更新中,相关报告有《》。
2025-02-10
deepseek入门到精通
以下是关于 DeepSeek 从入门到精通的相关内容: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对作者有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为作者提供了很多思考方向;Thinking Claude 是作者现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 此外,《》是清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理(Reasoning)模型。其标志性表现是在回答用户问题前,会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种能力源于其背后独特的“教育方式”,在许多其他的 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已经率先进入了“自学成才”的新阶段。
2025-02-07
我想精通AI
要精通 AI ,您可以从以下几个方面入手: 1. 基础理论: 了解人工智能、机器学习、深度学习的定义及其之间的关系。 简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 6. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 此外,您还可以: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。
2025-01-04
如何系统性地了解认知到熟练精通AI行业
要系统性地从了解认知到熟练精通 AI 行业,可以从以下几个方面入手: 基础理论: 明确人工智能、机器学习、深度学习的定义以及它们之间的关系。 简要回顾 AI 的发展历程和重要里程碑。 数学基础: 掌握统计学基础,熟悉均值、中位数、方差等统计概念。 了解线性代数中的向量、矩阵等基本概念。 具备基础的概率论知识,例如条件概率、贝叶斯定理。 算法和模型: 对于监督学习,了解常用算法如线性回归、决策树、支持向量机(SVM)。 熟悉无监督学习中的聚类、降维等算法。 了解强化学习的基本概念。 评估和调优: 清楚如何评估模型性能,包括交叉验证、精确度、召回率等。 学习使用网格搜索等技术优化模型参数。 神经网络基础: 理解神经网络的基本结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,还可以通过了解当下 AI 行业的佼佼者 OpenAI 及其掌舵人山姆·奥特曼的为人处事态度和原则,洞悉其宏伟构想,从而掌握 AI 行业的理念趋势。
2024-12-19
prompt 从入门到精通
以下是关于 prompt 从入门到精通的相关内容: Claude 在开箱即用时提供了高水平的基线性能,但 prompt 工程可以帮助进一步提升其性能并微调响应以适应特定用例。若要快速开始使用提示或了解提示概念,可参阅提示入门:https://docs.anthropic.com/claude/docs/introtoprompting 。 小七姐提供的 Prompt 喂饭级系列教程小白学习指南(一):对于新手学习 prompt,第一步要有一个大模型帐号并熟悉对话方式,如 ChatGPT4 或国产平替: 。 海螺 AI Prompt 教学入门 认识海螺 AI : MiniMax 视频模型能识别用户上传的图片,生成高度一致的视频,还能理解超出图片内容的文本并整合到视频生成中。 只依靠模型综合能力就能实现顶级影视特效,用户可自由创作丰富多变的电影级视频。 人物表情控制力强,5 秒钟内可实现多种表情变化。 近期上线提示词优化功能,对无特殊要求的建议开启,专业创作者有 2000 字提示词空间。 为达到更好表现效果,设计了两类 Prompt 的参考公式。 总之,无论新手还是老手,通过清晰结构和灵活表达,都能掌握 Prompt 编写技巧,实现“一个人+一个 AI=一个专业剧组”的愿景。
2024-12-16