使用 DeepSeek 的步骤如下:
此外,DeepSeek 具有以下特点和相关信息:
同时,关于 DeepSeek 还有以下相关内容:
用Coze做了个小测试,大家可以对比看看[e8c1a8c3012fedad10dc0dfcc8b1e263_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Jz9cbKxDbocGtIxXFFEcdiHjnRc?allow_redirect=1)[heading1]如何使用?[content]Step1:搜索www.deepseek.com,点击“开始对话”Step2:将装有提示词的代码发给DeepseekStep3:认真阅读开场白之后,正式开始对话[heading1]设计思路[content]1.将Agent封装成Prompt,将Prompt储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担2.通过提示词文件,让DeepSeek实现:同时使用联网功能和深度思考功能3.在模型默认能力的基础上优化输出质量,并通过思考减轻AI味,增加可读性4.照猫画虎参考大模型的temperature设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改5.用XML来进行更为规范的设定,而不是用Lisp(对我来说有难度)和Markdown(运行下来似乎不是很稳定)[heading1]完整提示词[heading2]v 1.3[heading1]特别鸣谢[content]李继刚:【思考的七把武器】在前期为我提供了很多思考方向Thinking Claude:这个项目是我现在最喜欢使用的Claude提示词,也是我设计HiDeepSeek的灵感来源Claude 3.5 Sonnet:最得力的助手
[heading2]总结关于DP模型的使用分享DP模型的功能:能进行自然语言理解与分析、编程、绘图,如SVG、MA Max图表、react图表等。使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。审核方法:可以用其他大模型来解读DP模型给出的内容。使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景:包括阅读、育儿、写作、随意交流等方面。案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示DP模型的应用。关于音系学和与大模型互动的分享音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如bug和DIFF SIG,探讨语言概念在音系学下的心理印象等。大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。关于Deepseek的介绍与活动预告Deepseek文档分享:在3群和4群分享了Deepseek的相关文档,也可在v to a gi的飞书知识库中搜索获取。Deepseek使用介绍:介绍了Deepseek的模型、收录内容、提示词使用技巧和好玩的案例等。未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入Deepseek。
使用cursor可以不用下载上一步中的Pycharm网址:https://www.cursor.com/这个教程很多,通过对话获得代码即可。因为这里面用的是大语言模型Claude3.5sonnet、GPT4o等语言模型,包括我用cursor small也试了,最好是指令更详细一些,比如:我想做个2048游戏,请用上pygame库。。等等[heading4]Deepseek(新手推荐这个,2→3.2→4这样路径)[content]网址:https://www.deepseek.com/zh我们只需要获得游戏代码即可,Deepseek很方便,国内能访问,网页登录很方面,目前完全免费!点击开始对话,左边选择代码助手:直接向神龙许愿吧:[heading4]通义灵码[content]在Pytharm中,“文件”-“设置”-“插件”-红色框位置搜索“通义灵码”(如图:),安装通义灵码插件:(目前免费)[heading4]JetBrains自身的助手插件[content]在Pytharm中,“文件”-“设置”-“插件”-红色框位置搜索“Jetbrains AI assistant”(如图:),安装Jetbrain AI assistant插件:(收费,目前有7天免费试用)[heading4]Marscode及Tencent cloud AI code Assistant等等...[content]见上图绿色部分[heading4]无影的晓颖AI助手[content]在云栖大会上有过使用。晓颖助手内置在云电脑里,无影也是阿里旗下的,晓颖助手的使用很流畅,只是需要在无影的云电脑中。高能力的通用语言大模型通过明确的指令也可以得到python代码,不过我这边使用下来还是Deepseek和晓颖AI助手在生成2048游戏上更为简便准确,这句话仅供参考,不知道大家实践下来有什么新发现可以交流。