Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你比deepseek聪明吗

Answer

DeepSeek 具有以下优秀特点:

  1. 在语气上能够还原特定角色的语气,如帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。
  2. 对历史细节非常熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原历史称谓。
  3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,高级感十足。

此外,DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量,这种能力源于其独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已进入“自学成才”新阶段。

至于我是否比 DeepSeek 聪明,这很难直接比较,因为我们在不同的方面和场景中可能各有优势。

Content generated by AI large model, please carefully verify (powered by aily)

References

集合·DeepSeek 提示词方法论

很显然,它的回答是极其优秀的,深入研究,会发现它牛逼在下面几个方面——第一,它首先在语气上还原了一个帝王的语气。而上面其他模型输出尽管表达了意思,但语气完全不对。李世民作为千古一君,绝不可能用上面四家输出结果那样傻的语气说话,而DeepSeek也并没有用力过猛,用相对古典的文字但并没有直接用文言文,体贴地兼顾了可读性。第二,它对历史细节异常熟悉。我猜测这大概率和它支持“深度探索”和“联网搜索”同时开f启有关。“太极宫”、“甘露殿”、“掖庭局”、“观音婢”、“宫门鱼符完全还原了唐初的历史称谓。我特意查了一下,“观音婢”是李世民的长孙皇后的乳名,“掖庭局”是内廷用于史官和其他人员的一个专属机构。"魏徵"我以为是想写“魏征”写错了,后来发现“征”是“徵”的简体字,可以说这个AI非常讲究了。第三,和其他AI泛泛而谈的各种大词不同,Deepseek的输出极其具体而充满惊人的细节。“狼毫蘸墨时发现指尖残留着未洗净的血痂”,“史官们此刻定在掖庭局争吵。该用"诛"还是"戮","迫"还是"承"。“只是这次,他不敢触碰我甲胄上元吉的掌印”这些让画面跃然纸上的句子,每一句都没有写“愧疚与野心,挣扎与抱负”,但每一句都写的是“愧疚与野心,挣扎与抱负”,其中行文的隐喻拿捏非常到位,很高级。

详解:DeepSeek深度推理+联网搜索 目前断档第一

很显然,它的回答是极其优秀的,深入研究,会发现它牛逼在下面几个方面——第一,它首先在语气上还原了一个帝王的语气。而上面其他模型输出尽管表达了意思,但语气完全不对。李世民作为千古一君,绝不可能用上面四家输出结果那样傻的语气说话,而DeepSeek也并没有用力过猛,用相对古典的文字但并没有直接用文言文,体贴地兼顾了可读性。第二,它对历史细节异常熟悉。我猜测这大概率和它支持“深度探索”和“联网搜索”同时开启有关。“太极宫”、“甘露殿”、“掖庭局”、“观音婢”、“宫门鱼符完全还原了唐初的历史称谓。我特意查了一下,“观音婢”是李世民的长孙皇后的乳名,“掖庭局”是内廷用于史官和其他人员的一个专属机构。"魏徵"我以为是想写“魏征”写错了,后来发现“征”是“徵”的简体字,可以说这个AI非常讲究了。第三,和其他AI泛泛而谈的各种大词不同,Deepseek的输出极其具体而充满惊人的细节。“狼毫蘸墨时发现指尖残留着未洗净的血痂”,“史官们此刻定在掖庭局争吵。该用"诛"还是"戮","迫"还是"承"。“只是这次,他不敢触碰我甲胄上元吉的掌印”这些让画面跃然纸上的句子,每一句都没有写“愧疚与野心,挣扎与抱负”,但每一句都写的是“愧疚与野心,挣扎与抱负”,其中行文的隐喻拿捏非常到位,很高级。

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

Others are asking
想要对deepseek进行提问需要什么技巧吗?有没有什么高校组织给出的方案?
对 DeepSeek 进行提问时,以下是一些技巧: 1. 身份定位技巧:目的是让 AI 理解您的背景和专业水平。例如,差的表述是“帮我写一篇营销方案”,好的表述是“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧:提供具体的应用场景和限制条件。比如,差的表述是“写一篇新品发布文案”,好的表述是“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧:指定具体的输出格式和内容结构。例如,差的表述是“分析最近的新能源汽车销量数据”,好的表述是“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧:将复杂问题拆解为可管理的小任务。比如,差的表述是“怎么做短视频运营?”,好的表述是“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧:通过追问获得更精准的答案。例如,第一轮“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”追问 2:“可以增加一些具体的用户案例来支撑观点吗?” 6. 深度思考引导技巧:目的是获得更深入的分析和见解。
2025-02-07
deepseek入门到精通
以下是关于 DeepSeek 从入门到精通的相关内容: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对作者有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为作者提供了很多思考方向;Thinking Claude 是作者现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 此外,《》是清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理(Reasoning)模型。其标志性表现是在回答用户问题前,会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种能力源于其背后独特的“教育方式”,在许多其他的 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已经率先进入了“自学成才”的新阶段。
2025-02-07
用deepseek建立个人知识库
以下是关于用 DeepSeek 建立个人知识库的相关知识: RAG(Retrieval Augmented Generation,检索增强生成)是利用大模型的能力搭建知识库的关键技术。在进行本地知识库搭建实操前,需先了解 RAG。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过 RAG 实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 此外,搭建基于 GPT API 的定制化知识库,涉及给 GPT 输入定制化知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。将文本转换成向量能节省空间,可理解为索引。比如有大文本,可拆分成小文本块并转换成 embeddings 向量,保存在向量储存库作为问答知识库。当用户提问时,问题先转换成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。例如,对于一篇万字长文拆分成多个文本块,提问“此文作者是谁?”,可通过比较 embeddings 向量得出关联度高的文本块。
2025-02-07
提供一些deepseek提示词
以下是一些关于 DeepSeek 的提示词相关信息: 1. 效果对比:用 Coze 做了小测试,可对比查看。访问 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。 2. 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现同时使用联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定。 3. 完整提示词:v 1.3 ,特别鸣谢李继刚和 Thinking Claude 等。 4. 使用案例: 借助 AI 分析好文章,如找出喜欢的文章投喂给 deepseek R1,从写作和读者角度分析,询问文章缺点和提升空间,对作者进行侧写等。 让 AI 对自己写的文章点评,给出详细优缺点分析和指导建议。 根据文章内容对作者心理侧写。 5. 集合·DeepSeek 提示词方法论:可查看相关文章,如南瓜博士的相关内容,以及 DeepSeek 官方提示词等。最新文章观点学术报告及业界评论可参考特定链接。R1 模型也有一些使用建议。
2025-02-07
帮我找到deepseek的培训教程,我是一个技术小白
以下是关于 DeepSeek R1 的培训教程相关内容: DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。 准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 更有趣的是,DeepSeek 还有一个更加聪明的 R1zero 实验版本,这个版本甚至没有进行任何的初始引导,而是采用了完全从零开始的强化学习。实验表明,无需任何人类的监督训练,R1zero 自然而然地学会了用更多的思考步骤来解决推理任务,还学会了在推理过程中反思先前的推理步骤,探索解决问题的替代方法。但因为没有微调,R1zero 的输出内容可读性差、语言混合,且风险不可控。所以我们见到的是经过符合人类阅读偏好的冷启动与微调过的 R1 版本,确保 AI 生成内容的稳定、安全、道德、无害。 附:DeepSeek R1 完整训练过程,因文章定位与行文节奏设计,上文仅对影响 R1 涌现关键智能的前两个训练步骤进行了讲解。更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948 参考文献: 1. 碎瓜波斯兔子《Deepseek R1 可能找到了超越人类的办法》https://mp.weixin.qq.com/s/YgRgDw8ndSHJwcPNMqWZNQ 2. 大聪明赛博禅心《DeepSeek R1 是怎么训练的?》https://mp.weixin.qq.com/s/Wuz0H9jmZYV1jM1YtwTlA 3. 老刘说 NLP《可视化角度具象化理解 DeepSeekR1 类推理大模型的习得进程》https://mp.weixin.qq.com/s/ytKTGTgU2T7jSNrBghX1cA 4. Tianzhe Chu et al.《SFT 记忆,RL 泛化:基础模型训练后的比较研究》https://arxiv.org/html/2501.17161 5. Metaso 长思考对话《RL 和 SFT 在后训练中的区别》https://metaso.cn/s/WGdOwPC
2025-02-07
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方特点:DeepSeek 不是“中国式创新”的产物,其秘方是硅谷味儿的。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。同时,它在国内舆论场被描摹成“大模型价格战的发起者”,形成了一种平行时空的感觉。 2. V3 时刻:如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 作为中国最全球化的 AI 公司之一,赢得全球同行尊重的秘方也是硅谷味儿的。 3. 提示词提升:一个提示词“HiDeepSeek”能让 DeepSeek 的能力更上一层楼。通过 Coze 做了效果对比测试,使用方法包括搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek 等步骤。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量等。完整提示词版本为 v1.3,特别鸣谢了李继刚和 Thinking Claude 等。
2025-02-07
是AI聪明还是人的大脑聪明
AI 和人的大脑谁更聪明是一个复杂的问题,不能简单地一概而论。 从某些方面来看,AI 具有强大的计算能力和处理大量数据的能力,能够快速准确地完成特定任务。例如,在处理复杂的数学计算、大规模数据的分析和模式识别等方面表现出色。 然而,人的大脑具有独特的智慧和能力。大脑是一个混沌系统,具有创造性、适应性、情感理解、综合判断和复杂情境处理等能力。人类能够进行抽象思维、创新创造、理解情感和道德等方面的思考。 AI 是通过学习人类大脑结构来发展的,但目前仍存在诸多不足和缺陷。例如,大模型内部也是混沌系统,即使是科学家也无法解释其微观细节。 在绘画方面,人类的绘画创作通常是线性发展的过程,先学习线稿表达、色彩搭配、光影表现等,而 AI 是以积累数据、扩散噪声、再降噪收束的路径来生图,经常会在同一张图中呈现出不同绘画级别的细节。 总之,AI 和人的大脑各有优势和局限性,不能简单地判定谁更聪明。
2024-11-22