Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek+RPA

Answer

以下是关于 deepseek+RPA 的相关信息:

  • Deepseek 提示词方法论方面,有案例如笨笨 v 泡泡,以及 deepseek-r1:7b 模型行测试题分析过程及结果的相关链接。在飞书多维表格上也可调用 DeepSeek,且支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。
  • 影刀 RPA+AI Power 方面,其功能亮点在于大模型虽有局限,但 AI Power 集成丰富组件可拓展能力边界打造 AI Agent,如搜索引擎组件和 RPA 组件等。使用方式无缝多样,包括嵌入方式如网页分享、对话助理、API 集成等,能适应企业分散系统的不同业务场景。同时提供贴身的企业级服务支持,包括教学培训、技术答疑、场景共创等。
  • 在工作流方面,RPA 很早就用于工作流编排领域,现在越来越多的 RPA 软件带上了 LLM。如 ComfyUI 进行工作流化操作模式提高了流程可复用性,Dify.AI 工作流设计语言与 ComfyUI 有相似之处。Large Action Model 采用“通过演示进行模仿”技术,但 Agentic Workflow 存在用户使用少、复杂流程开发不稳定等问题,有人提出通过自然语言创建工作流的想法。
Content generated by AI large model, please carefully verify (powered by aily)

References

集合-Deepseek提示词方法论

https://mp.weixin.qq.com/s/kjYiRS9RE-25vywm0EsP6A?token=8615663&lang=zh_CNprompt:睡觉对于()相当于()对于身体健康?有4个选项,选择最正确的一个,A:精力充沛;跑步,B:身心愉悦;工作,C:梦游;以逸待劳,D:减肥;有氧运动另外一款推理模型zero的推理过程,表现也是很出色的。[heading2]Allen-Yarbo CEO[heading3]HR黑科技!我用AI+RPA+飞书打通智能招聘-[小红书](https://www.xiaoho[content][heading2]在飞书多维表格上调用DeepSeek[content]自定义AI(DeepSeek版):https://bytedance.larkoffice.com/base/extensiono/replit_3f6c0f185eac23fb支持DeepSeek R1、V3模型支持DeepSeek官方、火山方舟、硅基流动三个服务商

详解:影刀RPA + AI Power

大模型只能接收特定类型的输入内容,并按要求输出结果,但无法直接代替用户自动执行操作,这就极大限制了AI的能力,在实际的业务场景中仍需要大量的人工配合才能发挥作用。AI Power集成了丰富的AI组件及各种技能组件,可以极大地拓展AI服务的能力边界,打造AI Agent。比如搜索引擎组件可以让AI接入互联网获取实时信息,RPA组件可以直接调用影刀RPA客户端应用,从而实现AI自动化操作等。[heading2]无缝多样的使用方式[content]嵌入方式:网页分享、对话助理、API集成等企业有非常多分散的系统,对外的官网、客服群,内部的OA、CRM、ERP等,业务数据全都分散在这一个个信息孤岛上,很难用一套方案打通所有系统。AI Power提供网页使用、API对接、影刀RPA内置指令等多种调用方式,方便企业在不同的业务场景下灵活选择最适合的接入方式,让内部员工、外部客户等便捷地与AI交互。[heading2]贴身的企业级服务支持[content]服务内容:提供教学培训、技术答疑、场景共创等方面的贴身服务大模型类的AI对大部分企业来说都是新东西,企业既缺少对应的开发经历,也缺少相关的人才储备,从0开始非常困难,也容易走弯路。影刀AI Power拥有完整的产品运营、客户成功、技术支持团队,为每个客户提供贴身服务,帮助企业把产品用起来,把AI落地下去,找到最佳实践,助力业务成功。

Inhai: Agentic Workflow:AI 重塑了我的工作流

RPA其实很早就已经出现,就是做工作流编排领域。流程机器人(RPA)软件的目标是使符合某些适用性标准的基于桌面的业务流程和工作流程实现自动化,一般来说这些操作在很大程度上是重复的,数量比较多的,并且可以通过严格的规则和结果来定义,现在越来越多的RPA软件带上了LLM。ComfyUI的工作流设计近期出现的ComfyUI是将开源绘画模型Stable Diffusion进行工作流化操作模式,用户需要在流程编辑器中配置出每一个的pipeline,并通过不同节点和连线来完成模型的操作和图片内容生成,提高了流程的可复用性,降低了时间成本,同时它的DSL配置文件还支持导出导入。Dify.AI可被复制的工作流设计在Dify.AI中,我很兴奋的看到它的工作流设计语言跟ComfyUI会有一些相似之处,都是定义了一套标注化的DSL语言,并且非常方便的可以使用导入导出的功能进行工作流的复用。模仿式工作流是最快的学习方法Large Action Model采用称为“通过演示进行模仿”的技术。检查人们在单击按钮或输入数据时如何与界面互动,然后准确地模仿这些操作,他们收集知识并从用户提供的示例中学习,使他们更能适应进一步的变化并能够处理不同的任务。但是,有没有想过一个问题:Agentic Workflow看起来十分美好,但是使用的用户究竟有多少呢?我看了很多Agent商店,通过工作流创建的应用目前来看还是比较少的(可能是出现周期、工作流使用的上手难度等等一系列因素导致),此外Agentic Workflow似乎在复杂流程上的开发又并不是那么稳定可靠。Idea Time:通过自然语言创建工作流

Others are asking
MacBook 如何做一个 RPA 机器人
以下是在 MacBook 上制作 RPA 机器人的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-04-11
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
rpa技术
以下是关于 RPA 技术的相关信息: RPA(机器人流程自动化)是一种软件技术,能够模仿人类在电脑上执行的重复性任务。它可以在不改变现有系统架构的情况下工作,是一种快速部署且成本效益高的解决方案。 对于中小企业利用人工智能进行转型,RPA 技术可用于以下方面来提高效率和自动化流程: 1. 评估和识别日常重复性高的任务:通过分析日常工作流程,观察和记录员工的日常工作,确定哪些日常任务是耗时且重复性高的,这些任务通常是自动化的理想候选项。 2. 确定具体目标:例如提高效率、减少错误率、优化工作流程等,并计划和安排对员工日常工作的观察,确保覆盖不同的部门和职位。 3. 引入自动化工具:根据企业的具体需求和预算选择合适的自动化工具,如 RPA 技术,并在企业的 IT 系统中部署和配置,对自动化流程进行测试和优化。 在工作流编排领域,RPA 很早就已经出现。现在越来越多的 RPA 软件带上了 LLM。 此外,在一些新的应用中也有涉及 RPA 技术或类似的工作流自动化概念: 1. ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作模式,提高了流程的可复用性,降低了时间成本。 2. Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了一套标准化的 DSL 语言,并支持导入导出功能进行工作流的复用。 然而,目前 Agentic Workflow 存在一些问题,如使用用户较少、在复杂流程上的开发不够稳定可靠等。
2025-03-31
rpa
RPA 很早就已出现,主要用于工作流编排领域,旨在使符合标准的基于桌面的业务流程和工作流程实现自动化,通常这些操作重复且数量多,可通过规则和结果定义,如今越来越多的 RPA 软件带上了 LLM。 近期出现的 ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性并降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出以复用工作流。 Large Action Model 采用“通过演示进行模仿”的技术,收集知识并从用户示例中学习,适应变化和处理不同任务。 但 Agentic Workflow 存在一些问题,如使用用户较少,可能因出现周期、上手难度等因素,在复杂流程开发上也不太稳定可靠。 单 Agent 模式下,有“技能”“知识”“记忆”“对话体验”等点,将一整套工作流组合,每个工具在节点执行任务,可体验并在工作流中使用。 不同 Agent 流程编排开发平台中,workflow 可成为组件被调用,也能嵌套新的 workflow,基础节点、插件工具、LLM、逻辑条件处理等都是输入、输出的组装模块。 大模型根源的“不太聪明”,加上 workflow 也无法解决意图理解准确率问题,工作流主要解决流程的可控性,吴恩达老师也提到提升大模型本身质量很重要。 LangGPT 提示词框架应用了 CoT 完成从输入到思维链再到输出的映射,可解决模型规划过程中的路径拆解。
2025-03-23
rpa学习
RPA(机器人流程自动化)学习相关内容如下: RPA 很早就已出现,用于工作流编排领域,旨在使符合标准的基于桌面的业务流程和工作流程实现自动化,操作多为重复且数量较多,可通过规则和结果定义,如今不少 RPA 软件带上了 LLM。 ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,支持导入导出功能进行工作流复用。 Large Action Model 采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户示例中学习。 中小企业可通过任务自动化提高效率和自动化流程。首先评估和识别日常重复性高的任务,确定具体目标并观察记录,然后引入自动化工具,如 RPA 技术,它能模仿人类执行重复性任务,快速部署且成本效益高。 关于 RPA+财务税务问答机器人制作,包括直播准备与开场、AI 在税务工作中的应用及实现方式、使用引到 AP 创建税务 AI 智能助手及相关部署、飞书机器人与引到 AP 的结合及相关问题、RPA 产品介绍及应用场景等。杭州分叉智能公司的 RPA 产品可控制桌面软件实现办公流程自动化,RPA 可替代电脑办公中的重复有逻辑工作,适用于开具大量发票、查询出租车违章、朋友圈点赞等场景,多人多部门使用可提高办公效率。
2025-03-23
rpa难学吗
RPA 的学习难度因人而异。 RPA 很早就已出现,用于工作流编排领域,旨在使符合特定标准的基于桌面的业务流程和工作流程实现自动化,通常这些操作具有重复性和数量较多的特点,且能通过严格规则和结果定义。如今越来越多的 RPA 软件带上了 LLM。 头部商家都在使用 RPA,它 10 年前就有了,可理解为游戏外挂,主要用于办公领域,能控制桌面软件和操作 Web 端,代码被封装成组件,普通用户可搭建机器人,解决办公标准化、重复工作,还可结合人工智能,底层语言为 Python 但使用不需代码。 在财务领域,RPA 也有相应应用,比如数据操作、与多个信息化系统结合等场景有相应 SOP,不同公司因信息化系统不同工作流有差异。 但 RPA 在复杂流程上的开发可能不是那么稳定可靠,使用的上手难度也可能因多种因素而存在一定挑战。比如在 Agentic Workflow 中,通过工作流创建的应用目前来看还比较少,可能是出现周期、上手难度等因素导致。 不过,模仿式工作流是一种较快的学习方法,例如 Large Action Model 采用“通过演示进行模仿”的技术,从用户提供的示例中学习。同时,像 ComfyUI 和 Dify.AI 等在工作流设计方面也有各自的特点和优势。
2025-03-20
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13