Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

本地 部署deepseek

Answer

DeepSeek 相关信息如下:

  • DeepSeek 有多种含义,包括公司、网站、手机应用和大模型,尤其是具有推理功能的 DeepSeek R1 大模型,其权重文件开源,可本地部署。
  • 模型方面,Janus-Pro 是一种新型自回归框架,将图像理解和生成统一在一个模型中,模型(7B):https://huggingface.co/deepseek-ai/Janus-Pro-7B ,模型(1B):https://huggingface.co/deepseek-ai/Janus-Pro-1B 。
  • 联网版的实现方式:通过工作流+DeepSeek R1 大模型,需要拥有扣子专业版账号,开通 DeepSeek R1 大模型的访问地址为:https://console.volcengine.com/coze-pro/overview?scenario=coze ,添加在线推理模型,添加后在扣子开发平台才能使用,还需创建智能体。
  • 相关新闻:
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

deepseek公司:深度求索deepseek网站、手机应用deepseek大模型,尤其是指有推理功能的deepseek R1大模型,权重文件开源,可本地部署DeepSeek的官方频道:微信公众号:DeepSeek小红书:@DeepSeek(deepseek_ai)X(Twitter):DeepSeek(@deepseek_ai)最新消息:[DeepSeek深夜发布大一统模型Janus-Pro将图像理解和生成统一在一个模型中](https://waytoagi.feishu.cn/wiki/SneLwRmsYiUaI6kvxltcEBPPnhb)deepseek刚刚发布了新模型-一个强大的框架,它将图像理解和生成统一在一个模型中!!!上一个是智源开源的Emu3模型(7B):https://huggingface.co/deepseek-ai/Janus-Pro-7B模型(1B):https://huggingface.co/deepseek-ai/Janus-Pro-1BJanus-Pro是一种新型的自回归框架,它统一了多模态理解和生成。它通过将视觉编码解耦为独立的路径来解决先前方法的局限性,同时仍然利用单一的统一变压器架构进行处理。解耦不仅缓解了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus-Pro超越了之前的统一模型,并匹配或超过了特定任务模型的性能。Janus-Pro的简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。

韦恩: 被困在离线孤岛?DeepSeek 联网版 我已经用扣子实现了!! 不卡顿!!

甚至是一夜之间,DeepSeek R1大模型成了国民刚需,官网卡顿,不能使用联网搜索等等困扰了很多人,也有很多平台都上线了DeepSeek R1的各种版本,但是很少有满血版本,再就是很多是不能联网,这很痛苦。本地部署的版本前两天也带学员和粉丝们部署和体验了,总的来说能作为替补,很难作为长期使用的版本,为此苦苦寻觅。今天终于找到了更好,更舒服的打开方式。[heading1]核心路径[content]通过工作流+DeepSeek R1大模型,实现联网版的R1大模型。下面就带大家一步步来实现。[heading1]拥有扣子专业版账号[content]如果你还是普通账号,请自行升级或注册专业号后使用开通成功的是这样:[heading1]开通DeepSeek R1大模型[content]访问地址:https://console.volcengine.com/coze-pro/overview?scenario=coze打开火山方舟,找到开通管理,找到DeepSeek R1模型,点击开通服务添加在线推理模型,添加后在扣子开发平台才能使用添加过程:添加模型:完成接入:[heading1]创建智能体[content]点击创建,先完成一个智能体的创建

2月7日 社区动态速览

《[陈巍:DeepSeek是否有国运级的创新?从V3到R1的架构创新与误传的万字长文分析(上)](https://zhuanlan.zhihu.com/p/21208287743)》DeepSeek最新模型V3与R1采用混合专家(MoE)架构,显著提升计算效率,挑战OpenAI的闭源模型。V3引入多头潜注意力(MLA),将KV缓存压缩至新低,提升计算性能。R1则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。DeepSeek正以“国运级的创新”打破算力壁垒,开启大模型新时代。《[AI「视觉图灵」时代来了!字节OmniHuman,一张图配上音频,就能直接生成视频](https://mp.weixin.qq.com/s/0OYlkcxoFvx6Z9IN-aq90w)》字节跳动推出的新技术OmniHuman,利用单张图片和音频生成生动的视频,突破了传统技术的局限。它通过多模态混合训练,解决了高质量数据稀缺的问题,实现了对任意尺寸图像的支持,生成自然的人物运动。《[甲子光年:2025 DeepSeek开启AI算法变革元年](https://waytoagi.feishu.cn/record/S5Jtrlw9neyXMccQ6CAcZsxHnXu)》DeepSeek的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。同时,AI基础大模型的参数量迎来拐点,2025年发布的大模型呈现低参数量特征,为本地化部署到AI终端运行提供了可能。此外,报告强调2025年是算法变革的元年,DeepSeek的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。

Others are asking
deepseek入门到精通
以下是关于 DeepSeek 从入门到精通的相关内容: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对作者有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为作者提供了很多思考方向;Thinking Claude 是作者现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 此外,《》是清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理(Reasoning)模型。其标志性表现是在回答用户问题前,会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种能力源于其背后独特的“教育方式”,在许多其他的 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已经率先进入了“自学成才”的新阶段。
2025-02-07
用deepseek建立个人知识库
以下是关于用 DeepSeek 建立个人知识库的相关知识: RAG(Retrieval Augmented Generation,检索增强生成)是利用大模型的能力搭建知识库的关键技术。在进行本地知识库搭建实操前,需先了解 RAG。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过 RAG 实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 此外,搭建基于 GPT API 的定制化知识库,涉及给 GPT 输入定制化知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。将文本转换成向量能节省空间,可理解为索引。比如有大文本,可拆分成小文本块并转换成 embeddings 向量,保存在向量储存库作为问答知识库。当用户提问时,问题先转换成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。例如,对于一篇万字长文拆分成多个文本块,提问“此文作者是谁?”,可通过比较 embeddings 向量得出关联度高的文本块。
2025-02-07
提供一些deepseek提示词
以下是一些关于 DeepSeek 的提示词相关信息: 1. 效果对比:用 Coze 做了小测试,可对比查看。访问 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。 2. 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现同时使用联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定。 3. 完整提示词:v 1.3 ,特别鸣谢李继刚和 Thinking Claude 等。 4. 使用案例: 借助 AI 分析好文章,如找出喜欢的文章投喂给 deepseek R1,从写作和读者角度分析,询问文章缺点和提升空间,对作者进行侧写等。 让 AI 对自己写的文章点评,给出详细优缺点分析和指导建议。 根据文章内容对作者心理侧写。 5. 集合·DeepSeek 提示词方法论:可查看相关文章,如南瓜博士的相关内容,以及 DeepSeek 官方提示词等。最新文章观点学术报告及业界评论可参考特定链接。R1 模型也有一些使用建议。
2025-02-07
你比deepseek聪明吗
DeepSeek 具有以下优秀特点: 1. 在语气上能够还原特定角色的语气,如帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 对历史细节非常熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,高级感十足。 此外,DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量,这种能力源于其独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已进入“自学成才”新阶段。 至于我是否比 DeepSeek 聪明,这很难直接比较,因为我们在不同的方面和场景中可能各有优势。
2025-02-07
帮我找到deepseek的培训教程,我是一个技术小白
以下是关于 DeepSeek R1 的培训教程相关内容: DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。 准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 更有趣的是,DeepSeek 还有一个更加聪明的 R1zero 实验版本,这个版本甚至没有进行任何的初始引导,而是采用了完全从零开始的强化学习。实验表明,无需任何人类的监督训练,R1zero 自然而然地学会了用更多的思考步骤来解决推理任务,还学会了在推理过程中反思先前的推理步骤,探索解决问题的替代方法。但因为没有微调,R1zero 的输出内容可读性差、语言混合,且风险不可控。所以我们见到的是经过符合人类阅读偏好的冷启动与微调过的 R1 版本,确保 AI 生成内容的稳定、安全、道德、无害。 附:DeepSeek R1 完整训练过程,因文章定位与行文节奏设计,上文仅对影响 R1 涌现关键智能的前两个训练步骤进行了讲解。更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948 参考文献: 1. 碎瓜波斯兔子《Deepseek R1 可能找到了超越人类的办法》https://mp.weixin.qq.com/s/YgRgDw8ndSHJwcPNMqWZNQ 2. 大聪明赛博禅心《DeepSeek R1 是怎么训练的?》https://mp.weixin.qq.com/s/Wuz0H9jmZYV1jM1YtwTlA 3. 老刘说 NLP《可视化角度具象化理解 DeepSeekR1 类推理大模型的习得进程》https://mp.weixin.qq.com/s/ytKTGTgU2T7jSNrBghX1cA 4. Tianzhe Chu et al.《SFT 记忆,RL 泛化:基础模型训练后的比较研究》https://arxiv.org/html/2501.17161 5. Metaso 长思考对话《RL 和 SFT 在后训练中的区别》https://metaso.cn/s/WGdOwPC
2025-02-07
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方特点:DeepSeek 不是“中国式创新”的产物,其秘方是硅谷味儿的。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。同时,它在国内舆论场被描摹成“大模型价格战的发起者”,形成了一种平行时空的感觉。 2. V3 时刻:如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 作为中国最全球化的 AI 公司之一,赢得全球同行尊重的秘方也是硅谷味儿的。 3. 提示词提升:一个提示词“HiDeepSeek”能让 DeepSeek 的能力更上一层楼。通过 Coze 做了效果对比测试,使用方法包括搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek 等步骤。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量等。完整提示词版本为 v1.3,特别鸣谢了李继刚和 Thinking Claude 等。
2025-02-07
linux 下部署deepseek
在 Linux 下部署 DeepSeek 的步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动后生成语音时,需查看控制台输出,它会下载一些模型文件,因此比较慢,且可能因网络问题失败。但第一次加载成功后,后续会顺利。 5. 基于此基础可进行拓展,比如集成到 agent 的工具中,或结合 chatgpt 做更拟人化的实时沟通。 webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个数字参数,用于选择声音类型,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿。实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果。例如,可以设置为 。 使用 DeepSeek 的步骤: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 Deepseek。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 关于 DeepSeek 的评论: 游戏科学创始人、黑神话悟空制作人冯骥称:年前还是认真推下 DeepSeek 吧。V3 已经用了一个月,但 R1 仅仅用了 5 天。DeepSeek 可能是个国运级别的科技成果。它具备强大的推理能力,比肩 O1;参数少,训练开销与使用费用小;开源,任何人均可自行下载与部署;免费,官方目前提供的服务完全免费;支持联网搜索,是暂时唯一支持联网搜索的推理模型;由没有海外经历甚至没有资深从业经验的本土团队开发完成。如果这都不值得欢呼,还有什么值得欢呼?看到这条微博的您应直接访问网页链接马上用起来,也有移动 APP。
2025-02-06
deepseek R1部署
以下是关于 DeepSeek R1 部署的相关信息: DeepSeek R1 大模型成为国民刚需,但官网卡顿且存在不能联网等问题。 实现联网版 R1 大模型的核心路径是通过工作流+DeepSeek R1 大模型。 部署步骤包括: 拥有扣子专业版账号,若为普通账号需自行升级或注册专业号。 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze ,在火山方舟中找到开通管理,开通服务并添加在线推理模型,添加后在扣子开发平台才能使用。 创建智能体,点击创建完成智能体的创建。
2025-02-06
怎么本地部署DEEPSEEK
以下是本地部署 DeepSeek 的步骤: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。开通成功后会呈现相应状态。 2. 开通 DeepSeek R1 大模型: 访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。 添加在线推理模型,添加后在扣子开发平台才能使用。添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 4. 创建工作流: 创建一个对话流,命名为 r1_with_net,注意是“创建对话流”。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:这里需要在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek,输入包括搜索结果和选择开始节点的 USER_INPUT,开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮,系统提示词不需要输入。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。 5. 测试并发布工作流:输入您的测试问题,测试完成后,直接发布工作流。
2025-02-06
deepseek本地部署
DeepSeek 是一个非常出色的科技成果,具有以下显著特点: 1. 强大的推理能力,可与 O1 比肩。 2. 价格便宜,参数少,训练开销与使用费用小了一个数量级。 3. 开源,任何人都可自行下载与部署,并提供论文详细说明训练步骤与窍门,甚至有可运行在手机上的 mini 模型。 4. 免费,官方目前提供的服务完全免费,任何人随时随地可用。 5. 支持联网搜索,是暂时唯一支持联网搜索的推理模型(O1 还不支持)。 6. 由没有海外经历甚至没有资深从业经验的本土团队开发完成。 如果您想使用 DeepSeek,可以直接访问相关网页链接马上用起来,也有移动 APP 可供选择。 另外,关于 SDXL 的本地部署,对于配置较高的电脑,如 4080ti 显卡,生成一张图的速度在十秒左右,还是可以接受的。对于配置较低的电脑,需要自行测试。如果觉得操作麻烦,还可以安装 refine 插件,在文生图的界面直接使用 refine 模型进行绘画。
2025-02-06
在哪个网站可以部署deepseek更简单,无需代码,
以下是一些可以部署 DeepSeek 且相对简单、无需代码的网站: 1. 网址:https://www.deepseek.com/zh 。DeepSeek 很方便,国内能访问,网页登录很便捷,目前完全免费。点击开始对话,左边选择代码助手即可。 2. 网址:https://www.cursor.com/ 。使用 Cursor 可以不用下载上一步中的 Pycharm,通过对话获得代码即可。因为这里面用的是大语言模型 Claude3.5sonnet、GPT4o 等语言模型。
2025-02-06
deepseek的本地化部署对于软硬件的具体要求
DeepSeek 的本地化部署对于软硬件的具体要求如下: 系统:Windows 7 以上(不建议使用 XP 系统)。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 内存和显存配置: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。最低配置可能运行非常慢。
2025-02-06