Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么学习使用AI课程

Answer

以下是关于如何学习使用 AI 课程的建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

此外,微软也提供了一些 AI 初学者入门课程:

  1. 如需了解云计算中的人工智能主题,可以考虑参加《在 Azure 上开始使用人工智能》课程。
  2. 人工智能的商业应用案例:
  3. 经典机器学习:在《机器学习入门课程》中有详细介绍。
  4. 使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用:
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

微软AI初学者入门课程

如需了解云计算中的人工智能主题,可以考虑参加《[在Azure上开始使用人工智能](https://learn.microsoft.com/en-us/training/paths/get-started-with-artificial-intelligence-on-azure/?WT.mc_id=academic-77998-cacaste)》课程。[heading1]课程列表[content](待更新)|编号|课程|介绍|PyTorch|Keras/TensorFlow|实验||-|-|-|-|-|-||I|人工智能导论|人工智能导论|人工智能导论|人工智能导论|人工智能导论||1|人工智能简介和历史|[讲义](https://waytoagi.feishu.cn/wiki/HbhhwapFoiVgs1kk1TIcV3a7nzd)|||||II|符号人工智能|符号人工智能|符号人工智能|符号人工智能|符号人工智能||2|知识表示和专家系统|[讲义](https://waytoagi.feishu.cn/wiki/SBH5wXRnPi6ZRYkjplVcRTRPnJh)|[专家系统](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/Animals.ipynb)<br>[本体](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/FamilyOntology.ipynb)<br>[概念图](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/MSConceptGraph.ipynb)|||

微软AI初学者入门课程

人工智能的商业应用案例。如需要了解这方面的信息,可以考虑学习以下两个微软的课程:《[面向商业用户的人工智能学习](https://learn.microsoft.com/en-us/training/paths/introduction-ai-for-business-users/?WT.mc_id=academic-77998-cacaste)》、《[人工智能商学院](https://learn.microsoft.com/en-us/training/paths/transform-your-business-with-microsoft-ai/)》(和欧洲工商管理学院INSEAD共同开发)。经典机器学习。这在我们的《[机器学习入门课程](https://github.com/Microsoft/ML-for-Beginners)》中有详细介绍。使用Azure认知服务(Azure Cognitive Services)来创建实用的人工智能应用。如有需要,我们建议你从以下微软课程开始学习:《[视觉](https://learn.microsoft.com/en-us/training/paths/create-computer-vision-solutions-azure-ai/?WT.mc_id=academic-77998-cacaste)》、《[自然语言处理](https://learn.microsoft.com/en-us/training/paths/explore-natural-language-processing/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure OpenAI服务的生成式人工智能](https://learn.microsoft.com/en-us/training/paths/develop-ai-solutions-azure-openai/?WT.mc_id=academic-77998-bethanycheum)》等。

Others are asking
怎么开始学习AI使用课程?
以下是关于如何开始学习 AI 使用课程的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 微软相关课程: 如需了解云计算中的人工智能主题,可以考虑参加《》课程。 人工智能的商业应用案例方面,可以学习《》(和欧洲工商管理学院 INSEAD 共同开发)。 经典机器学习可参考《》。 使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,可从《》等微软课程开始学习。
2025-02-06
AI与教育
以下是关于 AI 与教育的相关内容: 使用 AI 帮助教育具有多种可能性,例如辅助自学、帮助教师减轻负担并提高课程效果。可以要求人工智能解释概念,获取良好结果。相关提示可作为自动导师,如找到。但使用时需注意人工智能可能产生幻觉,关键数据要依据其他来源仔细核查。 教育领域迎来了 AI 技术的春风,如个性化学习平台能提供定制化教学资源,自动评估系统能快速批改作业和考试。但教育体系与 AI 发展速度不匹配,传统教学方式和内容未及时更新,难以满足新兴行业对人才的需求,这对社会经济结构和生产力构成挑战,构建能跟上技术步伐的教育系统是必须面对的课题。 相关案例包括:书籍推荐“三本神经科学书籍”,认为学习和运用 AI 能力时,一些基础学科能打开新天地;“AI 赋能教师全场景”,来自 MQ 老师的投稿贡献;“未来教育的裂缝:如果教育跟不上 AI”,揭示了 AI 对教学和学习方式的实际影响;“化学:使用大型语言模型进行自主化学研究”。
2025-02-06
生成3D模型的AI
以下是一些关于生成 3D 模型的 AI 工具和相关信息: 3dfy.ai: 概览:是一家专注于将稀疏数据转化为逼真三维世界的公司,领导团队由计算成像领域资深专家组成,拥有近四十年综合专业知识。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型,在当前技术发展特定时期尤为重要。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 其他图片生成 3D 建模工具: Tripo AI:在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 Meshy:功能全面,支持文本和图片生成 3D 以及 AI 材质生成。 CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象。 Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域。 VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 在 3D 模型生成中,AI 主要完成了对 3D 模型生成流程的“一步到位”,工作流中的每个环节几乎都需要一位或一组 3D 美术工程师来完成,而使用 3D 生成模型可以直接完成一个可调整的 3D 粗模,大大提升效率。 此外,AI 在游戏测试环节中存在 3 大模拟场景,在优化环节承担改善角色动画、编程&加速、自动化游戏测试等功能。在游戏设计方面,AI 依托自然语言生成用法,用于角色与故事生成、游戏机制创新等,还能强化 NPC 模型的基础能力。在音乐与音效方面,AI 生成音乐有基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线,开发者正在使用 AI 生成音乐填充游戏中的音效和音乐。
2025-02-06
如何让AI总结超长文本
以下是让 AI 总结超长文本的一些方法和策略: 1. 对于需要进行很长对话的应用,可对前面的对话进行总结或筛选。当输入大小达到预定阈值长度时,触发总结部分对话的查询,或将先前对话的总结作为系统消息包含在内,也可在后台异步总结。 2. 对于超长文档,如一本书,可以使用一系列查询来总结文档的每一部分,然后将部分总结连接并再次总结,递归进行直至完成整个文档的总结。在总结某一点内容时,可包括前文的运行总结。 3. 除聊天内容外,还能让 AI 总结各种文章(不超过 2 万字),直接全选复制全文发送给 GPT 即可。 4. 对于 B 站视频,可利用视频字幕进行总结。若视频有字幕,可安装油猴脚本获取字幕,然后复制发送给 AI 执行总结任务。 5. 在当今世界,大型语言模型可用于概括文本,如在 Chat GPT 网络界面中操作。还可针对不同情况,如文字总结、针对某种信息总结、尝试“提取”而非“总结”、针对多项信息总结等。
2025-02-06
让AI总结播客的prompt
以下是关于您提到的内容的总结: 在“Claude 工程师聊 prompt”中,提到一个“汉语新解”的 prompt 爆火,探讨了如何写好 prompt 及未来随着大模型进化是否还需为其绞尽脑汁,Anthropic 公司几位负责相关工作的工程师录制播客讨论了好的 prompt 应如何写。 在“夙愿:AI 快速总结群聊消息”中,指出直接将原文发给 GPT 无法按意图工作,需编写提示词让其执行总结文字内容的工作,包括单人发言版和多人发言版,并介绍了后续处理 GPT 输出的方法。 在“杨志磊:对当事人提供的证据发表质证意见或制定诉讼方案”中,对通义千问和豆包 AI 在输入起诉状 prompt 后的表现进行了评测,包括对当事人信息、事实、诉讼请求等方面的处理,格式和内容的符合程度,以及对 prompt 的理解情况。
2025-02-06
怎么学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-06
ai课程
以下是为新手提供的学习 AI 的课程建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,为您推荐【野菩萨】的 AI 课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果想要免费获得这门课程,可以来参与 video battle,每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。 扫码添加菩萨老师助理,了解更多课程信息。
2025-02-06
我想让AI辅助我学习AE,有哪些课程可以让我学习
以下是一些可以辅助您学习 AE 的课程和学习路径: 1. 在 B 站可以找到丰富的 AE 软件入门课程,您可以自学。 2. 从包图网下载工程文件进行学习。 AE 软件的功能及学习方法包括: 1. AE 可通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。 2. 用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 3. 学习方法上,可以通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 AE 与 AI 结合运用方面: 1. 如用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 此外,还有一些关于 AE 的应用和相关分享: 1. 在短剧中,AE 在火焰、文字、光线等方面有少量应用。 2. 未来可能会分享短剧工作流等内容。 同时,在学习 AE 时,您还可以了解购买导比软件正版的优势,台湾节点学习 AE 插件,AE 插件合集购买,AE 模板运用,如通过转场、抠图等制作效果,以及 AE 图钉动画等实用技巧。
2025-02-06
吴恩达课程
以下是关于吴恩达课程的相关信息: 对于强化学习的入门学习,如果没有相关基础,可先看吴恩达的课程以获得大致理解,此课程估计需要 25 小时左右。 吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教书写 AI 提示词,并教利用 GPT 开发一个 AI 聊天机器人。相关资源包括: 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 吴恩达(Andrew Ng)是在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域有重要贡献,是在线教育平台 Coursera 的联合创始人。曾在斯坦福大学担任副教授,领导过谷歌的大脑项目(Google Brain),担任过百度公司首席科学家并领导百度研究院。以在深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及,还是多个人工智能和机器学习开源项目的倡导者。其教授的机器学习课程是斯坦福大学和 Coursera 上最受欢迎的在线课程之一,对人工智能领域发展影响深远。内容由 AI 大模型生成,请仔细甄别。
2025-02-05
有新手入门的系统课程吗
以下是为新手入门 AI 推荐的系统课程: 1. SD 从入门到大佬: 安装完 SD 后,可参考。 强烈推荐跟着 Nenly 同学的【B站 第一套 Stable Diffusion 系统课程】合集走一遍,大概 4 小时左右可掌握基础技能。此外,还有可选的图片版教程。 2. 新手学习 AI 的综合指南: 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。浏览入门文章,了解历史、应用和发展趋势。 开始学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后要实践巩固,可在知识库分享实践作品和文章。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 3. 《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友: 第一阶段:迈出第一步,看书听课进社区。感受是要系统性学习,打好基础。 DAY1 2024.5.22 初步探索:May 认为初期会走弯路,B站 上一些介绍 ChatGPT 原理的分享,消费可看,系统性学习要看高质量内容。 DAY2 2024.5.23 加入 AI 社区:waytoAGI。May 评价这是宝藏社区,可参考,先看新手指引入门。
2025-02-01
我应该怎么入门ai提示词,从哪个开始学习,有课程指路吗
以下是入门 AI 提示词的建议: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 国内大语言模型工具好用,学习可以从提示词开始。提示词的结构可以参考主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),例如“母亲很疲惫看着孩子”。 希望以上内容对您有所帮助。
2025-01-28
通往AGI之路,作为新手小白应该怎么学习
对于新手小白学习通往 AGI 之路,以下是一些建议: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 个人学习心得方面: 像 YoYo 一样,从不懂 AI 和提示词工程的蛮干状态,到能够创建智能体和应用于工作中。找到适合自己的学习路径,比如以兴趣为导向,注重学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 理解技术原理与建立框架方面: 可以观看如“【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili”(由林粒粒呀主讲)和“用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第11 期_哔哩哔哩_bilibili”等视频,帮助建立入门框架。
2025-02-06
新手小白怎么学习AI
对于新手小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-06
如何学习提示词工程
以下是关于如何学习提示词工程的详细指导: 一、理解提示词的作用 提示词向模型提供了上下文和指示,其质量直接影响模型输出的质量。它能帮助模型更准确地理解并完成所需的任务。 二、学习提示词的构建技巧 1. 明确任务目标,用简洁准确的语言描述。 2. 给予足够的背景信息和示例,帮助模型理解语境。 3. 使用清晰的指令,如“解释”“总结”“创作”等。 4. 对特殊要求应给予明确指示,如输出格式、字数限制等。 三、参考优秀案例 研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中找到大量案例。 四、实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 五、活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 六、跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 七、基础提示词 简单的提示词能获得大量结果,但结果质量与提供的信息数量和完善度有关。提示词可包含指令、问题、上下文、输入或示例等元素。使用 OpenAI 的聊天模型时,可使用 system、user 和 assistant 三个不同角色构建 prompt,system 不是必需的,但有助于设定 assistant 的整体行为。 八、学习 Stable Diffusion 的提示词 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉相关领域的专业术语和概念,研究优秀的图像标题和描述。 4. 掌握关键技巧:学习组合多个词条精确描述效果,掌握控制生成权重的技巧,处理抽象概念和情感等无形事物的描述。 5. 实践和反馈:使用不同提示词生成图像,对比结果分析原因,在社区分享请教获取反馈。 6. 创建提示词库:根据主题、风格等建立自己的词库,记录成功案例。 7. 持续跟进前沿:关注最新更新和社区分享,掌握新技术、新范式、新趋势。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-06
我想入门AI产品经理,有推荐的学习方案吗
以下是为您推荐的入门 AI 产品经理的学习方案: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,个人做了一下划分,仅供娱乐和参考: 1. 入门级: 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对 AI 产品经理的要求: 1. 懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 关注场景、痛点、价值。 观察目前行业的 AI 提示词工程师岗位的招聘技能要求情况: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 9. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 10. 具有一定的编程基础,熟练使用 Python、Git 等工具。 产品经理的工作内容(仅作参考):
2025-02-06
coze平台的bot是否能接入飞书的文档做为知识库使用
Coze 平台的 bot 能接入飞书的文档作为知识库使用。具体情况如下: 创建知识库时可使用手动清洗数据,也可参考自动清洗数据的相关课程。手动清洗数据能提高数据准确性。 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,可选择飞书文档、自定义等进行操作,还能编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:注意拆分内容以提高训练数据准确度,比如对于画小二课程,要按章节进行人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能够搜到。 Coze 的知识库功能支持上传和存储外部知识内容,包括从本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据,并提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识不足的情况,提升回复准确性。 当 Coze 接入飞书后,能将 AI 技术集成到个人的生产力体系中,用户可将自己的知识数据上传构建个人知识库,开发 bot 并部署到个人订阅号上与粉丝互动。
2025-02-06
stable diffusion 如何使用
Stable Diffusion 是一种扩散模型的变体,以下是关于其使用的相关内容: 模型原理: 在传统扩散模型中存在计算效率挑战,稳定扩散为解决此问题而提出。 其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪和在文本引导下进行多轮预测的 UNET。 安装配置: 电脑系统需为 Win10 或 Win11,避免使用更低版本系统。 电脑需满足以下性能要求:运行内存 8GB 以上,为英伟达(N 卡)显卡且显卡内存 4GB 以上。可通过在桌面上找到“我的电脑”右键点击“属性”查看 Windows 规格,以及鼠标右击桌面底部任务栏点击“任务管理器”查看电脑的运行内存和 GPU 来检查配置。 训练过程: 初始选择十亿个随机数字作为参数值,此时模型无用。 通过训练这一数学过程,基于输入和期望输出的差异,运用基本微积分对参数值进行调整,经过多次训练,模型逐渐优化,最终达到无法从进一步训练中受益的点,作者会发布参数值供免费使用。 此外,ComfyUI 存放路径为 models/checkpoints/,模型包括 SD1.5、SDXL 等基础预训练模型,还有如 DreamBooth 等训练方法,存在 EMAonly&pruned VS Full、FP16&FP32 等格式,以及模型自带已适配的 VAE 和微调模型等。同时存在融合模型,如 checkpoint+checkpoint、Lora+Lora、checkpoint+Lora 等形式。
2025-02-06
小白怎么最快时间熟悉使用各种AI热门工具
以下是帮助小白最快熟悉使用各种 AI 热门工具的方法: 1. 对于不太熟悉 AI 常见工具的,可以先阅读。 2. 了解 Coze 工具: 可以直接向 AI 询问相关问题。 Coze 上手极其简单,更新特别快,插件比较多。 能一键生成思维导图等,还能通过工作流实现多种功能,如靠谱搜索、搜索结果出图等。感受各种插件和工作流组合的效果,可参考。 3. 对于普通人直观初接触 AI,主要有两个方面: 最低成本能直接上手试的工具是什么,自己能否试试。 现在最普遍/最好的工具是什么、能达到什么效果。 为了更便捷展示 AI 能力,可选择聊天工具、绘画工具、视频工具、音乐工具展开说明。
2025-02-06
怎么使用chat-gpt
以下是关于如何使用 ChatGPT 的相关内容: 对于产品经理: 1. 背景前提:若不是专业的 BI 工程师,对数据治理、SQL 优化思路等不太了解,可跟着 GPT 的提示及查询资料逐步进行。本次使用的是免费的 ChatGPT3.5 版本。 2. 完整使用过程: Step1:旧代码输入 首先将需要优化的旧代码输入到 ChatGPT 模型中,若直接粘贴 1900 行的旧代码会提示报错,可进行分次输入。分段输入后再联合,让 GPT 理解旧代码实现的效果以及熟悉查询表和字段,方便后续生成优化代码时可直接复制粘贴到数据库中运行。 Step2:需求及现状问题输入 在完成第一步的原 SQL 输入后,将真实的业务需求场景以及现在的问题输入给 GPT。这能帮助 GPT 更好地理解旧代码背后的真实业务需求,结合旧代码运行的问题,让 GPT 进一步给出针对性的优化建议,输出更符合需求的代码。此过程可能有好几轮的输入输出,需要不断强化 GPT 对真实需求的认知。 Step3:根据优化结果不断调试 在输入完旧代码、需求和问题之后,GPT 模型会给出新的代码。需要不断地根据 GPT 的结果进行调试和优化,直到生成满足需求的新代码。过程可能比较繁琐,包括查资料、报错、纠正 GPT、不断补充需求细节等,需要有一定的耐心。 对于英文学习: 推特博主的英语老师制作了一个 GPT 工作流,基于每个人的日常需求生成定制素材。具体使用方法: 1. 先把整段 prompt 喂给 ChatGPT(建议开一个新的对话专门用来学习英文)。 2. 然后 ChatGPT 会扮演你的美国好朋友,每当输入英文和中文表达,ChatGPT 都会返回更地道的表达,并且对其中的俚语部分加粗,更容易帮助学习和记忆。同时针对发送的话题,ChatGPT 会举一反三,结合欧美流行的内容给出更多例子,帮助更好理解和记忆。 3. 建议使用方式:开一个窗口,复制 prompt;手机端打开这条历史记录;点右上角的耳机图标,开始打电话;打电话又能练口语又能练听力;结束之后看回顾,可以帮助阅读。群友也写了一个类似的版本,并放在讯飞上做了尝试,效果不错。
2025-02-06
deepseek使用手册
以下是关于 DeepSeek 的使用手册: 使用地址:https://chat.deepseek.com/(有手机客户端) 模型下载地址:https://github.com/deepseekai/DeepSeekLLM?tab=readmeovfile API 文档地址:https://apidocs.deepseek.com/zhcn/ DeepSeek 的提示词使用方法比较长,单独列了一篇 公司简介: DeepSeek(深度求索)是一家专注于人工智能基础技术研究的科技公司,致力于探索 AGI(通用人工智能)的实现路径。 成立时间:2023 年 总部:中国杭州 定位:聚焦大模型研发与应用,提供高效、安全、可控的 AI 技术解决方案。 效果对比: 用 Coze 做了个小测试,大家可以对比看看,相关视频: 如何使用: Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-06