Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

nvidia ptx是什么东西

Answer

Nvidia PTX 是 NVIDIA 推出的一种中间表示语言(Intermediate Representation Language)。它用于在 CUDA(Compute Unified Device Architecture)编程模型中,为不同的 NVIDIA GPU 架构提供一种通用的代码表示形式。PTX 允许开发者编写一次代码,然后由 NVIDIA 的编译器根据具体的 GPU 架构将其编译为可执行的机器码,从而提高了代码的可移植性和开发效率。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
Nvidia 显卡算力天梯图
以下是为您提供的关于 Nvidia 显卡算力天梯图的相关信息: 算力是指计算能力,可直接理解为显卡的性能。在电脑中,显卡就是 GPU,一张显卡的重要参数包括 GPU 和显存。 GPU 是一种专门做图像和图形相关运算工作的微处理器,其生产商主要有 NVIDIA 和 ATI。GPU 的强大主要决定了生图和训练的效率,越强大的算力在生图(推理)和训练上消耗的时间就越短。显存在生图过程决定了直接推理的图片大小,在训练时受制于训练工具的要求,显存容量是门槛。 在选择算力时,需要综合 GPU 性能和显存大小两个参考维度。由于需要使用到 CUDA 加速,显卡大概率只能选择 NVIDIA 的。 以下为您提供一些可能不太具备时效性的参考资料: 1. 各种显卡的稳定扩散性能测试报告(需要科学🕸️):https://docs.google.com/spreadsheets/d/1Zlv4UFiciSgmJZncCujuXKHwc4BcxbjbSBg71SdeNk/editgid=0 2. GPU 测评结果方便大家选购:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=reciB9KZtj&table=tblyh76bHrCi4PXq&view=vewUunvDn1
2025-03-02
nvidia
以下是关于您提到的“nvidia”的相关信息: 1. 英伟达在 AI 领域有新的动作,推出了通过画图提示词自动生成匹配的 ComfyUI 工作流的 ComfyGen,目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,效果甚至更符合人类对提示词的判断和理解,且在与其他模型和人类写的提示词的对比中略胜一筹,但项目未开源。 2. 英伟达起步于看到游戏市场的需求,如今在 AI 领域有重要地位。 3. 在 2024 年,全球芯片出口管制下,中国仍是重要市场。美国商务部长警告英伟达,中国在美芯片制造商中所占份额减少,但中国当地分支机构目前未受控制。字节跳动通过美国的甲骨文租用 NVIDIA H100 访问权限,阿里巴巴和腾讯与 NVIDIA 就在美国建立自己的数据中心进行谈判,同时谷歌和微软向中国大型企业推销云服务。 4. 2024 年,提供强大模型的成本下降,如 OpenAI 成本下降 100 倍,Google Gemini 也有价格下降且性能强劲。由于计算成本高,模型构建者越来越依赖与大型科技公司建立合作伙伴关系,反垄断监管机构担心这将巩固现有公司的地位。
2025-01-09
nvidia tensorrt是什么
NVIDIA TensorRT 是基于 CUDA 和 cuDNN 的高性能深度学习推理优化引擎,是一种在 NVIDIA 硬件上部署光速推理的解决方案。它包含了许多优化,但只能在 NVIDIA 硬件上运行。 随着大模型参数规模的不断增长,在有限的算力资源下,提升模型的推理速度逐渐变为一个重要的研究方向。常用的推理加速框架包含 TensorRTLLM 等。TensorRTLLM 由 NVIDIA 开发,是高性能推理框架,详细的推理文档见: 。 此外,NVIDIA NIM 基于 NVIDIA Triton Inference Server、NVIDIA TensorRT、NVIDIA TensorRTLLLLM 等强大的推理引擎构建,是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程。
2024-12-01
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
waytoagi东西好多,我不知道从哪里看起
以下是关于如何使用 WayToAGI 知识库的指导: 1. 从 Agent 板块开始: 以 Agent 板块为例,链接: 。 用法:从下往上看,逐个点击,都有视频。 选择原因:共学都有视频,是从注册开始的手把手教学,多看几遍基本能保障调通一个工具、搭好一个 Agent。 注意事项:内容较多,点进去看看哪个工具您听过就从哪个工具开始,以免太累。 2. 看了一些视频之后: 链接: 。 用法:明确自己想看理论还是应用,找到导航,想看哪里点哪里。 备注:智能千帆、阿里云百炼有视频,其余部分没有。 注意事项:内容较多,要考虑聚焦,先挑一个,开始手把手一起做,只要开始用起来,就有可能达成目标。 3. 快捷方式: 点开链接就能看,不用注册,不用花钱,直接点这个链接就能看:点击 。 想看啥就看啥,比如想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分,内容分类清晰。 有问题还能问,如果看了还有不懂的,或者想跟别人交流,可以加入社群讨论。 WayToAGI 是一个帮助您快速入门 AI、学会用 AI 搞事情的“武器库”。无论您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能提供帮助。AI 是未来的趋势,现在学习一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WayToAGI 就是您最该看的“AI 宝典”。
2025-03-04
开发转AI产品经理,需要学习哪些东西,请推荐资料库的内容给我让我学习
如果您从开发转型为 AI 产品经理,以下是一些您需要学习的内容和推荐的学习资料: 1. 技术原理方面: 思维链:谷歌在 2022 年的一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】。 RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI;可搭建企业知识库和个人知识库。 PAL(程序辅助语言模型):2022 年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 2. 个人总结:很多大佬发言表示要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽然现在可以让 AI 辅助阅读,不过还是要完成一定的知识储备。林粒粒呀的这期视频是一个很好的科普入门。 3. 视频二:技术框架与关于未来的想象。之前对安克创新的印象可能是卖充电宝和安防设备,但看了这期访谈,被 CEO 阳萌的认知震撼,很多观点有启发,强烈建议看原访谈视频。其中提到 Transformer 是仿生算法的阶段性实现,10 年、20 年后大家将不再用 TA 。
2025-03-03
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
想要入行ai产品经理,要学的东西很多,还有本职工作,很焦虑,怎么办
如果您想要入行 AI 产品经理但感到焦虑,以下是一些建议: 1. 合理规划时间:在本职工作之余,制定一个合理的学习计划,将学习 AI 产品经理所需的知识和技能分解为小目标,逐步实现。 2. 明确学习重点:根据行业需求,例如参考 AI 提示词工程师的岗位技能要求,包括本科及以上学历,计算机科学、人工智能、机器学习相关专业背景;熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等);对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。明确自己需要重点学习和提升的方面。 3. 掌握算法知识:理解产品核心技术,了解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策;掌握一定的算法知识,可以帮助与开发团队进行更有效的沟通,减少信息不对称带来的误解;在产品规划阶段,能够评估某些功能的技术可行性;了解算法前沿可以帮助更好地把握产品的未来发展方向;了解算法可以帮助发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力;掌握相关知识可以提升数据分析能力。 4. 借鉴他人经验:可以参考身边 AI 产品经理的工作内容和经验,例如从 01 打造产品、完成 LLM 评测体系的搭建等。 5. 调整心态:认识到学习和成长需要时间,不要过分焦虑,保持积极的心态,逐步积累和进步。
2025-02-19
cursorrules是个什么东西,为什么在做cursor需要用到它?
.cursorrules 是 Cursor 中的一个特殊文件,需放在打开文件夹的根目录。它具有以下重要作用: 1. 改变 Cursor 对于后台 LLM 的 prompt:文件中的所有内容都会作为 prompt 的一部分发给后端的 AI,如 GPT 或 Claude,为定制化带来极大灵活性。例如,可以把计划的内容放在这个文件里,让 Cursor 在对话时获取最新版计划,还能在文件中给予更详细的指令。 2. 实现闭环:Cursor 会自动读取该文件内容了解最新动态,经过思考后将更新后的进度和下一步计划写回文件。 3. 支持更多工具的使用:由于可以通过.cursorrules 直接控制给 Cursor 的 prompt,且 Cursor 有运行命令的能力,可事先在文件中向它介绍工具用法,使其学会使用工具完成任务。例如,对于网页浏览和搜索工具,可在文件中进行相关设置和说明。 4. 规范代码生成:就像给助手的“整理指南”,提前把编码规则、项目结构、注意事项写在这个文件里,AI 会自动按照要求写代码,避免生成混乱的代码。
2025-02-06
api是什么东西?能实现什么?
API 就像是一个信差,它接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 以“奥本海默”的搜索为例,比如像 themoviedb.org 这样的网站,其网址包含域名(www.themoviedb.org)用于定位网站,路径(/search)指定特定页面位置,查询参数(如 query=奥本海默)则明确具体的搜索内容。 对于 GPT 来说,使用 API 时首先要明确想要做什么样的 GPT 以及是否需要外部数据,然后去寻找所需的外部数据的 API 文档,或者自己开发 API 以及寻找市面上可用的 Action。对于一些不熟悉的 API,需要在 Prompt 里告知如何使用。 如果您对 Action 很感兴趣,可以从系统学习 API 相关知识、在网上寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续前进。
2025-02-02