Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai伦理

Answer

AI 伦理是一个复杂且重要的议题。以下是一些关键方面:

  • 对于 AI 决策,存在诸多疑问。比如,AI 是否真有意识,能否取代人类决策,其给出的“完美”答案是否只是数据的重组,是否提升了决策效率但也带来了主观偏见和独立思考能力的消耗,以及是否展现了类人思维但可能只是人类的拟人化偏差。
  • 关于 AI 的道德决策,谁来负责其“道德”是个问题,AI 的“伦理”可能只是人类价值观的映射。
  • 此外,AI 看似能解决一切问题,但也可能在悄悄创造新问题。当我们过度依赖 AI 时,可能会丧失应对未知挑战的能力。
  • 例如,英国国防部在 2022 年 6 月发布了自己的 AI 伦理原则和政策,以确定政府在 AI 军事能力方面的方法,并将通过特定方法确保政策应用的一致性,促进英国在国防领域 AI 应用的领导地位,同时在引入法定责任和框架迭代前考虑是否需要豁免以允许现有监管机构继续其领域级方法。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程

你认为AI已经足够智能,可以取代人类决策?它真的理解问题的本质,还是只是在玩一场精妙的文字游戏?当AI给出"完美"答案时,你是否想过这可能只是海量数据的巧妙重组?AI让你的决策更快更精准了?但你是否正在用看似客观的数据,合理化你的主观偏见?效率提升的背后,是否正在消耗你独立思考的能力?你觉得AI展现出了类人的思维?可你确定那不是你自己的拟人化偏差在作祟吗?当AI"理解"你时,它是真的懂你,还是你在自欺欺人?你相信AI能做出道德决策?那么,谁来为AI的"道德"负责?你有没有想过,AI的"伦理"可能只是人类价值观的苍白映射?AI似乎能解决一切问题但它是否正在悄悄创造我们尚未意识到的新问题?当我们过度依赖AI时,我们是否正在丧失应对未知挑战的能力?从"谁是人类"比赛的惊人结果出发,本文将深入探讨AI意识的本质迷思。我们将剖析AI在企业决策中的双刃剑效应,揭示其背后潜藏的认知陷阱和伦理困境。通过解构生物自然主义vs计算功能主义的争论,以及最新的AI诱导虚假记忆研究,我们将为企业管理者提供一个全新的思考框架。本文旨在帮助决策者在AI浪潮中保持清醒,既能把握机遇,又能规避风险,最终实现真正有价值的人机协作。在这个AI日益普及的时代,我们不仅要问AI能做什么,更要思考我们应该让AI做什么。<!--more-->

AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程

你认为AI已经足够智能,可以取代人类决策?它真的理解问题的本质,还是只是在玩一场精妙的文字游戏?当AI给出”完美”答案时,你是否想过这可能只是海量数据的巧妙重组?AI让你的决策更快更精准了?但你是否正在用看似客观的数据,合理化你的主观偏见?效率提升的背后,是否正在消耗你独立思考的能力?你觉得AI展现出了类人的思维?可你确定那不是你自己的拟人化偏差在作祟吗?当AI”理解”你时,它是真的懂你,还是你在自欺欺人?你相信AI能做出道德决策?那么,谁来为AI的”道德”负责?你有没有想过,AI的”伦理”可能只是人类价值观的苍白映射?AI似乎能解决一切问题但它是否正在悄悄创造我们尚未意识到的新问题?当我们过度依赖AI时,我们是否正在丧失应对未知挑战的能力?

【法律法规】《促进创新的人工智能监管方法》.pdf

determines HM Government’s approach regarding AI-enabled military capabilities.We willensure appropriate coherence and alignment in the application of this policy through a contextspecific approach and thereby promote UK leadership in the employment of AI for defencepurposes.Ahead of introducing any statutory duty to have due regard to our principles,and inadvance of introducing other material iterations of the framework,we will consider whetherexemptions are needed to allow existing regulators(such as those working in areas like nationalsecurity)to continue their domain-level approach.

Others are asking
我需要批量对比两版教材中具体文字和插图的变化调整,该使用什么ai工具最合适
对于批量对比两版教材中具体文字和插图的变化调整,目前没有直接针对此需求的特定 AI 工具。但您可以考虑以下几种方式和相关工具来实现类似的功能: 1. 利用自然语言处理技术,如使用 ChatGPT 等语言模型,辅助您对教材的文字内容进行分析和比较,但可能需要您对结果进行进一步的整理和判断。 2. 对于插图的对比,可以尝试使用图像编辑软件,虽然不是专门的 AI 工具,但通过手动操作和一些辅助功能,也能在一定程度上进行比较和分析。 3. 如果您具备一定的编程能力,可以考虑使用相关的图像处理库和自然语言处理库,自己开发一个简单的对比工具。 另外,在一些工作场景中,如批量制作单词卡片,可以使用搞定设计来批量产图,并结合 ChatGPT 辅助生成和整理内容。在图像生成和处理方面,Stable Diffusion 可以用于图像的生成、修改和局部重绘等操作。
2025-04-01
AI将带来哪些新赛道、新机会
AI 带来的新赛道和新机会包括以下方面: 1. 引领新的服务模式,即“智能即服务”,重塑工作和生活,为芯片和云计算行业带来新机遇,GPU 需求预计持续增长。 2. 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额可能成为下一轮 AI 革命的重要爆发点。 3. 科技巨头通过资本控制 AI 模型公司,企业竞争策略呈现分化,行业未来更加多元化和复杂。 4. 大模型争霸,如 OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等公司相互竞争,为 AI 发展设定标准。 5. 随着模型规模和自然语言理解能力增强,专业创作和企业应用将改变甚至颠覆,如营销文案、邮件沟通、客户服务等。 6. 基础模型领域竞争刚开始,如 OpenAI、Google、Cohere 等公司,以及新兴的开源选项和共享神经网络模型的社群。 7. 基于 LLMs 服务或训练 Transformer 模型,诞生涉及多个行业的新应用。 8. 进入多模态灵活转换的新时代,实现文本、图像、音频、视频等多模态相互理解和转换。 9. 人类劳动形式“软件化”,复杂劳动被抽象为可调用的软件服务。 10. AI 行业目前亏损,商业化进程有待提升。 11. 云厂商是产业链中的“链主”。 12. 头部 AI 应用中,创意工具仍占最大比重,To P 应用市场潜力大,ToB 应用发展路径复杂,ToC 应用面临挑战。 13. Copilot 和 AI Agent 是 AI 应用的主要技术实现方式。 14. 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,中国 AI 公司积极出海。
2025-04-01
最好的AI学术文献搜索软件?
以下是一些较好的 AI 学术文献搜索软件: 1. Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 此外,在论文写作和课题研究中,还可以利用其他 AI 工具辅助,如: 1. 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可进行重写和摘要。 2. 数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 在教学中,Claude 和 Gamma.app 这两个工具可以帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。使用 Claude 时,可以通过对话解决如学术网站条件搜索等问题。
2025-04-01
产品经理用的AI工具
以下是一些适合产品经理使用的 AI 工具: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com) 另外,北京分队中也有相关人员在产品经理领域对 AI 工具有所熟悉和应用,比如枫 share、行远等。 银海作为产品经理,用 10 个 Prompt 提示词做了产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。其产品体验地址为:https://www.pmai.cn/?utm_source=qoZaR5O ,具体介绍可查看相关视频演示: 。
2025-04-01
作为财务人员,可以开发什么样的AI助手
作为财务人员,可以开发以下类型的 AI 助手: 1. 税务方面: 利用引刀 AP 创建网页实现智能解答税务问题。 结合飞书避免信息泄露和实现自动回复。 2. 日常工作方面: RPA 流程自动化机器人,可替代电脑办公中的重复有逻辑工作,如开票、网银流水下载等,为企业降本增效。 财经数据分析助手,能分析和解释财经数据,提供投资建议。 风险评估模型,进行财务风险评估和预测。 自动化金融报告编制,自动化编制和解读财务报告。
2025-04-01
个人AI助手可以有什么方向的应用
个人 AI 助手的应用方向广泛,包括但不限于以下几个方面: 1. 教育培训: 数字教师:如让牛顿亲自授课《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。可以与历史人物对话交流,不受时空限制,实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 数字陪伴:作为孩子的玩伴,给予赞美等社会奖励,促进儿童成长和提高学习成绩。 2. 宠物相关: AI 宠物助手:基于自然语言处理和计算机视觉,帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,如会自主移动并引起宠物注意、会发声和互动的玩具等。 AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 3. 信息检索与分析: Google Gemini 的 Deep Research:智能信息检索与分析工具,基于主题快速检索全网资源并生成综合报告,支持导出为 Google Docs 文档格式,适合学术研究、内容创作、行业分析等场景,整合了 Google 核心数据源,结合模型多模态处理能力,可处理大量上下文信息。 第四范式发布的桌面端 AI 搜索工具:基于人工智能技术的全能搜索助手,提升用户在本地文件、即时通信、网盘等各类在线应用中的搜索体验,可通过简单描述查询意图进行模糊搜索,支持实时预览搜索结果。
2025-04-01
人工智能伦理策略
以下是关于人工智能伦理策略的相关内容: 英国国防部:2022 年 6 月发布了自身的 AI 伦理原则和政策,确定了英国政府在人工智能赋能军事能力方面的方法。将通过特定情境的方法确保该政策应用的适当一致性和协调性,从而促进英国在国防领域使用人工智能方面的领导地位。在引入任何法定责任之前,会考虑是否需要豁免以允许现有监管机构(如在国家安全等领域工作的机构)继续其领域级别的方法。 欧盟:欧洲议会和欧盟理事会规定了人工智能的统一规则,并修正了一系列条例。人工智能是一个快速发展的技术族,能带来广泛的经济、环境和社会效益,如改进预测、优化运营等,但也可能根据具体应用、使用情况和技术发展水平产生风险,对受欧盟法律保护的公共利益和基本权利造成损害。鉴于其可能的重大影响和建立信任的必要性,人工智能及其监管框架的发展必须符合欧盟价值观、基本权利和自由,应以人为本,最终目的是提高人类福祉。为确保在健康、安全和基本权利方面对公众利益提供一致和高水平的保护,应为所有高风险人工智能系统制定统一规则,这些规则应与《宪章》一致,非歧视性,并符合欧盟国际贸易承诺,还应考虑相关宣言、原则和准则。 AI 应用专家的实战经验: 企业管理者:在小规模决策中使用 AI 分析工具作为决策参考,制定 AI 工具使用的培训计划,识别可能受益于 AI 自动化的重复性任务并测试解决方案效果,制定公司的 AI 使用政策确保符合伦理标准和法律要求。 教育工作者:尝试使用 AI 辅助教案设计、为学生制定个性化学习计划、将 AI 工具整合到课堂活动中、开发教导学生了解 AI 的课程模块。 无论属于哪个群体,与 AI 协作是学习过程,应从小处着手,保持好奇心和开放态度,保持批判性思维,将 AI 视为工具而非完全依赖的解决方案。
2025-01-11
人工智能伦理建设的基本内容
人工智能伦理建设的基本内容包括以下方面: 欧洲议会和欧盟理事会规定了人工智能的统一规则,并修正了一系列相关条例。回顾委员会任命的独立人工智能高级别专家组 2019 年制定的《值得信赖的人工智能的伦理准则》,其中包含七项不具约束力的人工智能伦理原则: 人类主体和监督:人工智能系统的开发和使用应为人服务,尊重人的尊严和个人自主权,其运行可由人类适当控制和监督。 技术稳健性和安全性:开发和使用方式应在出现问题时保持稳健,抵御试图改变其使用或性能的行为,减少意外伤害。 隐私和数据治理:符合现有隐私和数据保护规则,处理的数据应具备高质量和完整性。 透明度:开发和使用方式应允许适当的可追溯性和可解释性,让人类知晓交流或互动情况,并告知部署者系统的能力和局限性以及受影响者的权利。 多样性、非歧视和公平:开发和使用方式应包括不同参与者,促进平等获取、性别平等和文化多样性,避免歧视性影响和不公平偏见。 社会和环境福祉:有助于设计符合《宪章》和欧盟基础价值观的连贯、可信和以人为本的人工智能。 问责制。 人工智能能带来广泛的经济、环境和社会效益,如改进预测、优化运营等,但也可能根据应用、使用情况和技术发展水平产生风险,对受欧盟法律保护的公共利益和基本权利造成损害。 鉴于人工智能的重大影响和建立信任的必要性,其发展必须符合欧盟价值观、基本权利和自由,应以人为本,最终提高人类福祉。 为确保公众利益的高水平保护,应为所有高风险人工智能系统制定统一规则,这些规则应与《宪章》一致,非歧视,符合国际贸易承诺,并考虑相关准则。
2025-01-02
给人工智能伦理建设提出建议,在内容和体系方面都可以
以下是为人工智能伦理建设提出的一些建议: 在内容方面: 1. 关注算法的可解释性,使人工智能的决策过程能够被理解和解释。 2. 研究方法以评估、表征和减少数据集中及人工智能系统中的偏差。 3. 确保人工智能系统的安全性和鲁棒性,包括进行保证、验证、校验、安全和控制等方面的工作。 4. 重视隐私和安全,包括用于训练和推理人工智能系统的数据集,以及相关的软件和硬件。 5. 研究人工智能系统在科学发现和社会挑战方面的应用。 6. 考虑人工智能系统对社会、伦理、安全、教育、劳动力和安全等方面的影响,特别是对社会中不同群体,尤其是历史上被边缘化的群体的社会影响。 7. 进行定性和定量的未来能力、应用和影响的预测。 在体系方面: 1. 开展教育项目,支持在 K12、社区学院、本科、研究生、博士后、成人学习和再培训等阶段培养与人工智能系统相关的多样化劳动力。 2. 提高对人工智能系统的伦理、社会、安全和安全影响的认识。 3. 促进对人工智能原理和方法的广泛理解,以培养能够使用人工智能产品并适应其带来的社会和经济变化的劳动力和公众。 4. 针对不同的行业应用,如智能制造、智能家居、智慧城市、科学智算等,制定相应的标准,规范技术要求和应用场景。 5. 制定安全标准,规范人工智能全生命周期的安全要求,包括基础安全、数据、算法和模型安全、网络技术和系统安全、安全管理和服务、安全测试评估、安全标注、内容标识、产品和应用安全等。 6. 制定治理标准,规范人工智能的技术研发和运营服务等要求,包括人工智能的鲁棒性、可靠性、可追溯性的技术要求与评测方法,以及全生命周期的伦理治理要求,如伦理风险评估、公平性、可解释性等伦理治理技术要求与评测方法,还有伦理审查等标准。
2025-01-02
谈谈人工智能伦理建设的内容、体系
人工智能伦理建设的内容和体系包括以下方面: 在国际层面,例如美国国会的相关法案,提出要为联邦人工智能研究、开发和示范活动提供跨机构协调,制定自愿共识标准和指南,开展教育和培训活动等。 在国家层面,以中国为例,《国家人工智能产业综合标准化体系建设指南(征求意见稿)》中,行业应用标准方面,涵盖智能制造、智能家居、智慧城市、科学智算等重点领域,规范了各领域的技术要求和应用场景。安全/治理标准方面,包括全生命周期的安全要求,如基础安全、数据与模型安全等,以及治理要求,如伦理风险评估、公平性与可解释性等伦理治理技术要求与评测方法、伦理审查等标准。 在欧盟层面,规定人工智能应符合欧盟价值观、基本权利和自由,是以人为本的技术,最终目的是提高人类福祉。为确保公众利益的保护,应为高风险人工智能系统制定统一规则,且规则应与相关宪章和原则保持一致,并符合国际贸易承诺。同时指出人工智能能带来广泛效益,但也可能根据应用和发展水平产生风险和损害。
2025-01-02
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
AIGC伦理检查清单
以下是一份关于 AIGC 伦理检查清单的相关内容: AIGC 概述: GenAI(生成式 AI)是能够从已有数据中学习并生成新数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(AIGenerated Content)。 我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成共同监管形势。 AIGC 的分类及应用: 主要分为语言文本生成、图像生成和音视频生成。 语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。 音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 触发的法律与道德风险: 重伦理道德,主要体现在两方面: 国家安全:不得生成煽动颠覆国家政权、推翻社会主义制度,危害国家安全和利益、损害国家形象,煽动分裂国家、破坏国家统一和社会稳定,宣扬恐怖主义、极端主义。 伦理道德:不得宣扬民族仇恨、民族歧视,暴力、淫秽色情,以及虚假有害信息等法律、行政法规禁止的内容。 GenAI 工具和 AIGC 提供者应注意在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生民族、信仰、国别、地域、性别、年龄、职业、健康等歧视。
2024-11-21