Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何进行数据分析

Answer

以下是关于如何进行数据分析的详细步骤:

  1. 明确数据分析的目标:确定目标是理解业务、优化业务还是预测未来。
  2. 收集整理与清洗相关数据:通过公司的数据库、营销工具、调查问卷等方式收集销售数据、客户反馈、财务报告等方面的数据,完成后做简单的数据清洗。
  3. 让 ChatGPT 学习相关数据含义和用法:将不同来源的数据输入到 ChatGPT 中进行学习,让其能够理解这些数据的含义和用法,包括销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等信息。
  4. 进行数据分析给出重要结论:通过 ChatGPT 生成的结果,分析不同来源的数据,得出以下重要结论:
    • 提高销售额和市场份额的营销策略和活动,如降低产品价格、提供更好的售后服务、优化产品设计和功能、增加市场推广力度等。
    • 影响客户满意度和忠诚度的因素,如产品质量、服务质量、品牌形象、价格竞争力等。
    • 影响财务报告的因素,如销售额、毛利率、净利润、营销费用占比等。
  5. 根据汇报对象身份进行可视化调整:报告可以包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。针对不同身份的人的营销报告有所不同。

在使用 ChatGPT 助力数据分析时,流程如下:

  1. 第一个用户提示:限定 SELECT SQL,告诉它不要用 SELECT*来查询全部列,且仅回复一条 SELECT SQL 语句。至少查询两列:数据项、数据值,且不能直接查询如 mediumtext/longtext 这样的长类型字段,可以用 count/substring 等函数查询这些长类型列。
  2. 系统提示是表结构信息,如有难以理解的字段可以告诉 GPT 字段的意义,有多个表可分开描述。
  3. 需校验 GPT 生成的 SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行 SQL 查询数据。
  4. 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。keyMap 的作用是数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表。由于支持多维数据,单维度数据和多维度数据的提示分开定义,根据结果数据 tableData 的维度,用条件运算符选择对应的提示,再传递给 GPT。
  5. 结果数据 tableData 是跟随接口一起返回到前端,已经通过 SQL 查询的数据,不能让 GPT 又生成一次,否则非常耗时。

逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。流程描述得比较详细,更多讲述开发时的一些问题、重点和技巧。

Content generated by AI large model, please carefully verify (powered by aily)

References

营销:定制营销报告

1、请根据已有的不同来源的数据,生成详细的报告,分别汇报给下属、跨部门平级和领导2、请根据给出的数据,回答以下问题,并给出结论与图表最近一个季度的销售趋势如何?导致销售量变化的因素有哪些?客户反馈如何反映我们的营销策略效果?根据客户反馈,我们可以做出哪些调整?我们营销活动的投资回报率是多少?如何优化我们的营销支出以在下一个季度获得更好的效果?3、请根据数据报表,提炼3个重要结论汇报给领导第一步,明确进行数据分析的目标确定目标是理解业务、优化业务还是预测未来第二步,收集整理与清洗相关数据收集整理销售数据、客户反馈、财务报告等方面的数据,可以通过公司的数据库、营销工具、调查问卷等方式收集。完成后做简单的数据清洗。第三步,让ChatGPT学习相关数据含义和用法将不同来源的数据输入到ChatGPT中进行学习,让ChatGPT能够理解这些数据的含义和用法。这些数据可以包括销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等信息。第四步,进行数据分析给出重要结论通过ChatGPT生成的结果,分析不同来源的数据,根据以下几个方面得出重要结论提高销售额和市场份额的营销策略和活动:例如降低产品价格、提供更好的售后服务、优化产品设计和功能、增加市场推广力度等。影响客户满意度和忠诚度的因素:例如产品质量、服务质量、品牌形象、价格竞争力等。影响财务报告的因素:例如销售额、毛利率、净利润、营销费用占比等。第五步,根据汇报对象身份进行可视化调整报告可以包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。针对不同身份的人的营销报告的不同之处:

ChatGPT 助力数据分析:实际案例与技巧

1.第一个user prompt:限定SELECT SQL,这里告诉它:不要用SELECT*来查询全部列,且仅回复一条SELECT SQL语句。至少查询两列:数据项、数据值,且不能直接查询如mediumtext/longtext这样的长类型字段,可以用count/substring等函数查询这些长类型列。2.system prompt是表结构信息,如有难以理解的字段可以告诉GPT字段的意义,有多个表可分开描述。3.需校验GPT生成的SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行SQL查询数据。4.数据分析的user prompt:提示数据分析,限定返回的JSON格式:conclusion、keyMap、title。keyMap的作用:数据key的映射,获取结果数据对应的维度、数据项、数据值的key值,用于映射数据渲染图表。由于支持多维数据,单维度数据的keyMap没有维度项,就存在让GPT返回两种结构的情况。这里我采取分开定义单维度数据和多维度数据的prompt,根据结果数据tableData的维度,用条件运算符选择对应的prompt,再传递给GPT。5.结果数据tableData是跟随接口一起返回到前端,已经通过SQL查询的数据,不能让GPT又生成一次,否则非常耗时。

ChatGPT 助力数据分析:实际案例与技巧

逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL分析:用户描述想分析的内容,后台连接DB,附带表结构信息让AI输出SQL语句,校验是SELECT类型的SQL,其他操作如UPDATE/DELETE绝不能通过!!校验通过后执行SQL返回结果数据。再将数据传给GPT(附带上下文),让AI学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给GPT分析数据,后续步骤与上面一致。流程描述得比较详细,就不具体讲解开发过程和代码了,而是会更多讲述开发时的一些问题、重点和技巧。相关重点:

Others are asking
AI数据分析的案例
以下是一些 AI 数据分析的案例: ChatGPT 助力数据分析 在 AI 爆炸的时代,ChatGPT 与数据分析结合有多种应用方式。 实现方式: 1. SQL 分析:分析平台自身的使用情况,例如图表配置化平台,输入一句话可分析用户配置图表相关的数据。 2. 个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据。 流程: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 ChatGPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 ChatGPT 分析数据,后续步骤与 SQL 分析一致。 专利审查方面的 AI 1. 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。 示例平台: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 2. 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析。通过机器学习算法,系统可以理解专利文献的内容,并提供相关性更高的检索结果。优点是提高了专利检索的准确性和效率,用户可以快速找到相关的专利文献。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析。系统可以自动提取专利文献中的关键信息,并对专利的技术内容进行分类和评估。优点是减少了人工工作量,提高了专利审查的效率和准确性。 使用这些平台的步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 总结:AI 技术在专利审查领域的应用,可以极大地提高工作效率,减少人工工作量,提高专利检索、分类和分析的准确性和效率。上述平台和工具展示了 AI 在专利审查各个环节的具体应用,帮助专利审查员和申请人更高效地处理专利相关事务。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-09
我使用了豆包,也学习了简单的提示词,但大数据反馈的结果并不好,很多数据分析,文档优化效果并不理想。我该怎么办
以下是一些可能有助于您改善大数据反馈结果和提升数据分析、文档优化效果的建议: 1. 像“给 Prompt 打分”的示例中那样,找专业的“Prompt 药剂师”对您的提示词进行详细分析,给出准确的评分和改进建议,以提升提示词的质量。 2. 对于数据分析和文档优化任务,要清晰明确地向模型阐述需求。例如,提供大模型可访问的数据源或上传数据表格,通过清晰的提示词说明需要从哪些维度分析数据,以及期望的分析结果输出格式。然后观察生成结果,不断迭代和优化提示词。 3. 对于“大模型幻觉”问题,目前虽无法完全消除,但可以通过其他第三方信息源和知识来检验生成内容是否准确。 4. 若想提高大模型的对话能力,可在 AGI 中搜索“结构化”获取相关文章。另外,如果您指的上下文 token 长度是大模型的记忆窗口,通常是无法延长的,因为这是设定好的。 5. 在用 ChatGPT 写剧本并希望其学习现有成功剧本时,要精心设计提问,清晰准确地表达您的需求,例如明确指出需要总结的规律以及在后续创作中的应用方式。
2025-01-08
表格数据分析
以下是关于表格数据分析的相关内容: 大模型招投标文件关键数据提取方案 预处理模块设计: 去除噪音信息:过滤掉页眉、页脚、版权声明等无关紧要的信息。 规范化文本:处理特殊符号、空白字符、异常换行等,确保文本格式整洁。 日期格式统一:通过正则表达式或日期识别工具将多种日期表示方式统一转换为标准的 ISO 格式(如“YYYYMMDD”)。 货币与金额格式化:统一货币单位和金额数字的格式,例如将“壹仟元”转换为“1000 CNY”,或将“$1,000”转换为“1000 USD”。 特殊符号处理:对招投标文件中的特殊符号进行规范化处理。 表格数据处理:使用表格解析工具(如 pdfplumber 或 pythondocx)提取表格结构和数据,并转化为 CSV 或 JSON 格式方便后续处理。 ChatGPT 助力数据分析:实际案例与技巧 流程: 1. 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),且不能直接查询长类型字段,可用 count/substring 等函数查询。 2. 系统提示是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 3. 校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 4. 数据分析的用户提示:限定返回的 JSON 格式(conclusion、keyMap、title)。keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,以映射数据渲染图表。由于支持多维数据,单维度数据和多维度数据的 prompt 需分开定义,根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt 传递给 GPT。 5. 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。 58 数据分析 161 万 示例表格数据: |名称|二级分类|三级分类|网址|2 月|3 月|4 月|5 月|6 月|7 月|8 月|9 月|10 月|11 月|迷你图|11/5 月1| |||||||||||||||||| |1|帆软数据|数据分析||https://www.fanruan.com/||||65|64|65|73|62|63|56||O2/I21| |2|RATH|数据分析||https://kanaries.net/|5.4|14|17|32|44|62|54|11|20|33||O3/I31| |3|rows.com|数据分析||https://rows.com/visionfd1f404d||||8|92|118|80|62|34|28||O4/I41| |4|亚信科技数智产品|数据分析||https://www.asiainfo.com/zh_cn/digital_intelligence_product_system.html||||43|30|58|47|41|29|23||O5/I51| |5|神策数据|数据分析||https://www.sensorsdata.cn/||||23|18|21|22|16|17|21||O6/I61|
2025-01-08
用ai做 电商数据分析
使用 AI 进行电商数据分析可以采取以下步骤和方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:利用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:运用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:利用 AI 分析不同营销活动效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:利用 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 14. 直播和视频营销:借助 AI 分析观众行为,优化直播和视频内容,提高参与度和转化率。 此外,AI 在电商领域还有其他应用场景,如品牌提升、舆论传播分析、推广方案制定等。例如: 品牌提升:包括品牌洋葱图思维模型、产品信息、人群、品类等多方面的分析和优化。 舆论传播分析:涉及舆论传播、数据分析、主题、事件等多个要素的研究和处理。 推广方案制定:涵盖品牌、产品信息、新品、成分等众多方面的策略规划。
2025-01-07
有数据分析方面的AI应用么
以下是一些数据分析方面的 AI 应用: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式的多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图切换。 AI 儿童安全座椅推荐系统:利用数据分析和机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅。 AI 汽车保养套餐推荐系统:结合数据分析和机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐。 AI 物流快递柜管理系统:借助数据分析和物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率。 AI 招聘面试模拟平台:运用自然语言处理和机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟。 AI 房地产装修设计平台:使用图像生成和机器学习,如酷家乐装修设计软件,为用户提供装修设计方案。 AI 游戏道具推荐系统:基于数据分析和机器学习,在一些游戏的内商城推荐功能中,根据玩家需求推荐游戏道具。 AI 天气预报分时服务:利用数据分析和机器学习,如彩云天气分时预报,提供精准的分时天气预报。 AI 医疗病历分析平台:通过数据分析和自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断。 AI 会议发言总结工具:运用自然语言处理和机器学习,如讯飞听见会议总结功能,自动总结会议发言内容。 AI 书法作品临摹辅助工具:借助图像识别和数据分析,如书法临摹软件,帮助书法爱好者进行临摹。
2025-01-06
怎么学习python数据分析
以下是关于学习 Python 数据分析的一些建议: 从工具和规模以及方法的角度来看,数据分析是一门独立完整的学科。 工具方面: 1. Excel:是最熟悉和简单的工具,会写公式算进阶用法,还能写 Excel 宏,ChatGPT 能根据需求写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据处理和分析的 Pandas、用于数值计算的 NumPy,画图的 Seaborn、plotly、matplotlib 等,机器学习相关的更多。一般数据分析代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 在 Python 中,以下是一些关键的库和技术: 1. 数据处理与清洗: Pandas:提供高效的数据结构如 DataFrame,用于处理和分析结构化数据。 NumPy:用于数值计算,提供多维数组对象和相关操作函数。 2. 数据可视化: Matplotlib:用于生成静态、交互式和动画可视化的绘图库。 Seaborn:基于 Matplotlib 的高级数据可视化库,提供更美观易用的图表绘制方法。 Plotly:交互式图表库,支持多种图表类型,适合生成动态和交互式图表。 3. 统计分析: SciPy:提供广泛的数学算法和函数,包括线性代数、统计学、优化等。 Statsmodels:用于统计建模和数据分析,适合进行统计测试和回归分析。 4. 大数据技术: PySpark:Apache Spark 的 Python API,用于大规模数据处理。 学习路径方面,可以参考以下课程内容: 1. 学习 Python 基础语法与文本处理,包括数据类型(字符串、数字、列表、字典)、控制结构(条件判断、循环语句)、文本处理基础(字符串操作方法、文件读写操作),通过实践实验如中文文本的基本处理,掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 2. 学习利用 Python 进行自然语言处理(NLP),了解 NLP 的概念和在人文研究中的重要性,掌握 Python 中的 NLP 库,如结巴分词(Jieba)等工具,通过实践实验如中文分词与词频分析,掌握基本的 NLP 操作,理解其在语言研究和教学中的应用。
2025-01-01
能否对已经完成的PPT用AI工具进行美化?
已经完成的 PPT 可以用 AI 工具进行美化。例如,可以给 Gamma app 发送指令来美化 PPT。另外,像爱设计等工具,在导入大纲生成 PPT 后,可按照公司要求自行优化字体、图片等元素,也能对下载后的 PPT 删改内容以达到预期。还可以使用 WPS 插件 chatPPT 为 PPT 添加动画。同时,市面上还有 gamma、百度文库、mindshow 等其他生成或美化 PPT 的 AI 工具可供选择。
2025-01-09
能否对上传的已经完成的PPT,用AI工具进行美化。
可以使用 AI 工具对已完成的 PPT 进行美化。例如,可以给 Gamma app 发送指令来美化 PPT。如果 PPT 中需要关键图表,可以咨询像 Claude 这样的工具,但它可能无法直接提供图表资料。此时,您可以采取以下措施获取图表: 1. 检查论文在线版本:有些期刊会发布论文的数字版本,包含原文、数据、图表和附录等内容。您可以在论文首页或期刊网站上检查相关链接,下载论文的在线全文 PDF 并查找所需要的图表资料。 2. 联系论文作者:如果论文的在线全文资料不可获得,您可以通过网络查找论文作者的联系方式,说明您对论文高度兴趣,希望能获取论文原文以查阅相关图表和数据信息。作者获取同意后有可能会向您发送电子版论文全文。 3. 咨询研究数据库:大学和公共图书馆通常订阅包括各类期刊在内的研究文献数据库。您可以联系相关馆员,说明论文题目和作者,请求他们帮您在数据库中查阅和获取该研究文章。这可能需要您前往图书馆亲自查阅,或支付少许费用获取电子资料。 另外,像卓 sir 利用 GPT4、WPS AI 和 chatPPT 等 AI 工具完成 PPT 制作,在生成后还可以按照公司要求自行优化字体、图片等元素,对下载后的 PPT 删改内容以达到心理预期。以爱设计为例,导入大纲到工具生成 PPT ,其他工具操作方式大同小异,都是基于 Markdown 语法的内容来完成 PPT 的生成。具体步骤,可以移步到 MindShow、闪击、爱设计等章节查看。
2025-01-09
哪个AI工具可以对音频内容进行总结
以下是一些可以对音频内容进行总结的 AI 工具: 1. 飞书妙记(https://www.feishu.cn/product/minutes):飞书的办公套件之一。 2. 通义听悟(https://tingwu.aliyun.com/home):阿里推出的 AI 会议转录工具。 3. 讯飞听见(https://www.iflyrec.com/):讯飞旗下智慧办公服务平台。 4. Otter AI(https://otter.ai/):转录采访和会议纪要。 5. BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/) 6. 15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/) 7. summarize.tech:AIpowered video summaries(https://www.summarize.tech/) 8. NotebookLM:最早主打的是智能笔记,上传文件之后会自动生成概览性的总结。用户可以在对话框里,根据上传文本的内容,直接用文字提问。支持长文本,语言目前只支持英文。
2025-01-07
哪个AI可以对音频进行总结
以下是一些可以对音频进行总结的 AI 工具和公司: 声音检测方面: :通过更强的听觉感知创造卓越的人类体验。 :先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。 :下一代声音 AI 平台,能够像人类一样理解任何声音。 :语音控制的家庭自动化系统。 :世界上首个智能家居听觉系统。 :可用于从音频源中提取隐藏数据的 AI 模型。 :无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。 :为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。 :智能音频穿戴设备。 :我们将声音转化为信息。 :使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。 语音增强与操作方面: :实时语音和口音转换流媒体服务。 :为高效在线会议提供的 AI 驱动软件解决方案。 :免费的实时语音变换器。 :为创作者、开发者和虚拟会议提供的降噪产品。 :软件在复杂声学环境中提升语音的清晰度和可懂度。 :不制作音频,让音频更好。 :会议和音频的降噪。 :采用最先进的 AI 技术消除视频会议通话中的所有背景噪音。 :一套 AI 驱动的音频质量增强工具。 :将智能手机变成高级语音增强设备的应用程序。 :去除干扰性背景噪音的智能手机应用程序。 :用于音频和语音产品的智能音频解决方案。 :通过引入机器学习功能来革新麦克风。 :生成式 AI 音频增强。 音视频总结方面:
2025-01-07
是不是可以跟任何大模型进行对话
一般来说,可以跟很多大模型进行对话。以下是一些常见的方式: 1. 对于 Llama3 大模型: 下载大模型主要是为了与之对话,或者称为使用其进行推理。 有两种对话方式,可使用 API 或部署简单界面。面向小白,这里主要介绍部署界面的方式。 例如,在 /root/autodltmp 路径下新建 chatBot.py 文件并输入相关内容,然后启动 Webdemo 服务,按照指示映射端口,在浏览器中打开相应链接即可看到聊天界面。 2. 对于 Llama 大模型: 首先编译,为利用 Metal 的 GPU 可用特定命令编译。 去指定网址下载模型。 llama.cpp 还提供了 WebUI 供用户使用,启动 server 后默认监听 8080 端口,打开浏览器就可以对话。 3. 对于通过 Open WebUI 使用大模型: 访问指定网址,使用邮箱注册账号。 登陆成功后,Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。如果要求不高,已实现通过 Web UI 与本地大模型对话的功能。 需要注意的是,不同大模型的访问速度和回答效果可能存在差异,例如 ChatGPT 访问速度快是因为其服务器配置高,回答效果好是因为训练参数多、数据更优以及训练算法更好。
2025-01-07
我是否可以在飞书上传我的相关文档,然后把这些文档作为知识库进行对话,若可以,如何操作
在飞书上可以上传您的相关文档并将其作为知识库进行对话。具体操作如下: 1. 您需要一个额外的软件:AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 2. 在 AnythingLLM 中,有一个 Workspace 的概念,您可以创建自己独有的 Workspace 与其他项目数据进行隔离。操作步骤为: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和您上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话。 3. 另外,您还可以参考以下操作在飞书上创建知识库并上传文本内容: 登录 。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入知识库页面,并单击创建知识库。在弹出的页面配置知识库名称、描述,并单击确认(一个团队内的知识库名称不可重复,必须是唯一的)。 在单元页面,单击新增单元。 在弹出的页面选择要上传的数据格式(默认是文本格式),然后选择一种文本内容上传方式完成内容上传。上传方式如下: 本地文档: 在文本格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址。单击下一步完成内容上传和分片。
2025-01-07