系统学习 API 知识可以从以下几个方面入手:
同时,在使用 API 时还需要注意以下几点:
总结一下:今天我们的讨论起始于人工智能中的“Agent&Action”,然后转向OpenAI对智能体(Agent)能力模型的定义。接着,我们深入探讨了ChatGPT中的Action(搜索、画图、代码解释器),以及GPT系列中的不同Action。使用了一个容易上手的Action Webpilot,用于访问网页获取实时的文本内容。最后,我们初步了解了API的概念,以及GPT如何通过Action与外部数据进行交互和使用。如果对Action很感兴趣,你可以从以下方向开始继续前进:系统的了解和学习API相关的知识去网上寻找可以用的API来练习发掘GPT Action更多的潜力以上是我认为相对容易入门的知识框架,但是我们都知道:你不可能只在一次分享/一篇文章中就获得完整的Action相关知识学习虽然没有终点,但有阶段性目标。大家可以通过后续看到的不同的教程和资料,识别这些知识之间的共性和逻辑关系,然后继续深化对这个主题的理解,构建你自己的知识体系。如果你对GPT开发有兴趣,想要认识更多玩GPT的朋友,欢迎加入GPTGeeker的星球:
在这个例子中,我们将电影的名称转换成表情符号。这展示了API适应捕捉模式和与其他字符一起工作的能力。[heading2]总结[content]该API能够理解文本的上下文并以不同方式重新表述它。在这个例子中,我们从一个更长、更复杂的文本段落中创建一个孩子可以理解的解释。这说明了该API对语言有深刻的理解。[heading2]完成[content]虽然所有提示都会导致完成,但在您希望API接替您工作时,请考虑将文本补全(Text completion)视为其自身任务。例如,如果给定此提示,则API将继续关于垂直农业方面思路训练。您可以降低温度设置以使API更专注于提示意图或增加温度设置以使其偏离主题。以下提示显示如何使用完整性帮助编写React组件。我们向API发送一些代码,并且由于它具有React库的理解而能够继续执行剩余部分。我们建议使用我们Codex模型处理涉及理解或生成代码等任务。欲了解详情,请访问我们的代码指南。事实回答该API具有从数据学习到很多知识点,并提供听起来非常真实但实际上是虚构答案的能力。限制API制造答案可能性有两种方法:1.为API提供基础事实信息,如果你提供给API要回答问题(如Wikipedia条目)的正文内容,它就不那么容易胡说八道.2.使用较低概率并告诉API如何说“我不知道”。如果API理解在某些情况下对响应不确定性较小时说“我不知道”或某种变化合适,则会倾向于少制造答案.在这个例子里面,我们给出了API已经掌握问题和答案样例,并举出无法得知问题样例并添加问号.我们还把概率设定为零,这样只要存在任何疑问,API就更可能用"?"回复。
这是第一个结果的数据,对应了搜索结果页的内容,你会发现展现的内容远比数据维度要少——这是因为有些数据虽然不展现,但为了支持筛选所保留的。注意看,这里出现了‘backdrop_path’,记得原先Prompt是怎么写的吗:取出backdrop_path这个数据作为主视觉图——所以这里是一个图片地址(),但它是不完整的,只有后半部分。就像是一个分成两块的藏宝图,两部分拼起来才是完整的图片地址。TMDb的官方API文档(https://developer.themoviedb.org/docs/image-basics)里就写了如何构造完整的图片URL:但是因为我们的Baby GPT已经是一个成熟的GPT了。实际上,它已经有TMDb的训练数据了(相当于裤兜里已经有半拉地图了)——所以即使你不说,它也会自己完成构建完整的图片地址。对于一些它不熟悉的API,还是需要在Prompt里告诉他要怎样使用。比如剩下的数据也可以用类似的方式让ChatGPT来处理,比如让他列出:上映时间'release_date'、评分'vote_average'、评分人数'vote_count':它就能很+我们最后提炼一下Action的工作流:首先,想一下你想要做一个什么样的GPT,以及是否需要外部数据——这两个谁先谁后不重要;然后,去你需要的外部数据寻找API文档,或者基于你的需求,自己开发一个API,寻找市面上可以直接用的Action;最后,基于API文档,编写Action里的Schema,和Prompt(如何处理取回来的信息)写在最后