Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么气大模型

Answer

大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT-3 拥有 1750 亿参数。以 Transform 为代表的大模型采用自注意力(Self-attention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。

大模型的训练和使用过程可以类比为“上学参加工作”:

  1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。
  2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。
  3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。
  4. 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。

在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。

另外,在 Stable Diffusion 中,不同的模型代表着不同的照片风格,比如想生成真人 AI 小姐姐,可以选用 chilloutmix 的大模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

教程:超详细的Stable Diffusion教程

用stable diffusion可以把自己想象成一个画家在起笔画画之前,我们要先确定我们画的是什么风格的画,是二次元动漫、三次元的现实照片、还是盲盒模型。因此,在我们确定了我们照片风格之后我们就要去切换大模型,不同的模型就代表着不同的照片风格。也就是SD界面左上角的“Stable Diffusion模型”假如现在我想生成一个真人AI小姐姐,就选用chilloutmix的大模型那么问题来了,我们这些模型从哪来呢?下载的模型放在哪里呢?在我分享给大家的链接里面,有部分比较常用的大模型(后续还有比较好的模型也会分享给大家)大家可以根据文件夹名称找到需要的模型。另外,这篇文章的第三部分会跟大家详细介绍去哪里下载模型,模型存放的位置,所以一定要看到最后!

Others are asking
常用的多模态大模型
以下是一些常用的多模态大模型: 1. InstructBLIP:基于预训练的BLIP2模型进行训练,在MM IT期间仅更新QFormer。通过引入指令感知的视觉特征提取和相应的指令,能够提取灵活多样的特征。 2. PandaGPT:是一种开创性的通用模型,能够理解6种不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 3. PaLIX:使用混合VL目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。 4. VideoLLaMA:引入了多分支跨模式PT框架,使LLMs能够在与人类对话的同时处理给定视频的视觉和音频内容,使视觉与语言以及音频与语言保持一致。 5. 视频聊天GPT:专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。 6. Shikra:Chen等人介绍了一种简单且统一的预训练MMLLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制,展示了值得称赞的泛化能力,可以有效处理看不见的设置。 7. DLP:提出PFormer来预测理想提示,并在单模态句子数据集上进行训练,展示了单模态训练增强MM学习的可行性。 8. BuboGPT:通过学习共享语义空间构建,用于全面理解MM内容,探索不同模式之间的细粒度关系。 9. ChatSpot:引入了一种简单而有效的方法来微调MMLLM的精确引用指令,促进细粒度的交互。 10. QwenVL:多语言MMLLM,支持英文和中文,还允许在训练阶段输入多个图像,提高其理解视觉上下文的能力。 11. NExTGPT:端到端、通用的anytoany MMLLM,支持图像、视频、音频、文本的自由输入输出,采用轻量级对齐策略。 12. MiniGPT5:集成了生成voken的反演以及与稳定扩散的集成,擅长为MM生成执行交错VL输出,在训练阶段加入无分类器指导可以提高生成质量。 13. Flamingo:代表了一系列视觉语言模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。 14. BLIP2:引入了资源效率更高的框架,包括用于弥补模态差距的轻量级QFormer,实现对冻结LLMs的充分利用,利用LLMs可以使用自然语言提示进行零样本图像到文本的生成。 15. LLaVA:率先将IT技术应用到MM领域,引入了使用ChatGPT/GPT4创建的新型开源MM指令跟踪数据集以及MM指令跟踪基准LLaVABench。 16. MiniGPT4:提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与LLM对齐,能够复制GPT4所展示的功能。 17. mPLUGOwl:提出了一种新颖的MMLLMs模块化训练框架,结合了视觉上下文,包含一个名为OwlEval的教学评估数据集。 18. XLLM:扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用QFormer的语言可迁移性,成功应用于汉藏语境。 19. VideoChat:开创了一种高效的以聊天为中心的MMLLM用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。
2025-01-06
哪个大模型找期刊文献最好用
目前在查找期刊文献方面,不同的大模型各有特点。大模型的特点包括: 架构多样:如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于翻译和摘要,decoderonly 擅长自然语言生成任务。 预训练数据量大:往往来自互联网上的论文、代码、公开网页等,通常用 TB 级别的数据进行预训练。 参数众多:如 Open 在 2020 年发布的 GPT3 就有 170B 的参数。 但对于哪个大模型找期刊文献最好用,没有明确的定论。不过,您可以关注一些常见的大模型,如 GPT 系列等,并根据实际需求和使用体验来判断。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
测试微调模型
以下是关于测试微调模型的相关内容: 在完成微调之后,需要对结果进行测试。微调不会直接影响原有的大模型,而是生成一些文件,包括模型权重文件、配置文件、训练元数据、优化器状态等。这些文件可以和原有大模型合并并输出新的大模型。 在测试之前,先通过不合并的方式进行微调结果的验证。例如,若数据集中有问答“问:你是谁?答:家父是大理寺少卿甄远道”,当给微调后的模型指定角色“现在你要扮演皇帝身边的女人甄嬛”,然后问模型“你是谁?”,若回答是“家父是大理寺少卿甄远道”,则认为模型微调有效果。 测试代码结果成功。之后可以将微调结果和原有大模型进行合并,然后输出新的模型,使用 webdemo 进行测试。包括切换到对应的目录、执行合并代码、生成相应文件、创建 chatBotLora.py 文件并执行代码进行本地测试、开启自定义服务等步骤,最终验收成功。 此外,当作业成功时,fine_tuned_model 字段将填充模型名称,可将此模型指定为 Completions API 的参数,并使用 Playground 向它发出请求。首次完成后,模型可能需要几分钟准备好处理请求,若超时可能是仍在加载中,几分钟后重试。可通过将模型名称作为 model 完成请求的参数传递来开始发出请求,包括 OpenAI 命令行界面、cURL、Python、Node.js 等方式。 要删除微调模型,需在组织中被指定为“所有者”。 创建微调模型时,假设已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定基本模型的名称(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成,每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本。开始微调作业后,可能需要一些时间才能完成,若事件流中断可恢复。工作完成后会显示微调模型的名称,还可列出现有作业、检索作业状态或取消作业。
2025-01-06
模型微调对模型的影响和价值
模型微调对模型具有重要的影响和价值,主要体现在以下几个方面: 1. 提高结果质量:能够获得比即时设计更高质量的结果。 2. 增加训练示例:可以训练比提示中更多的例子,从而改进小样本学习,在大量任务中取得更好的效果。 3. 节省 Token 和成本:由于更短的提示而节省了 Token,对模型进行微调后,不再需要在提示中提供示例,能够节省成本并实现更低延迟的请求。 4. 提高模型效率:通过专门化模型,可以使用更小的模型,并且由于只对输入输出对进行训练,舍弃示例或指令,进一步改善延迟和成本。 5. 适应特定领域:针对特定领域进行微调,优化所有层的参数,提高模型在该领域的专业性。 目前,微调适用于以下基础模型:davinci、curie、babbage 和 ada。参数规模角度,大模型的微调分成全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)两条技术路线,从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。而通过微调,可以在现有模型基础上,更经济、高效地适应新的应用领域,节省成本并加快模型部署和应用速度。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关知识: 创建微调模型: 假设您已准备好训练数据,使用 OpenAI CLI 开始微调工作。需指定从哪个 BASE_MODEL 开始,如 ada、babbage、curie 或 davinci,还可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,则可能需要数小时。每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本,您可访问定价页面了解微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成,若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署,它们在某种程度上是有用的。 大型语言模型的微调: 一旦有了基础模型,就进入计算成本相对较低的微调阶段。在这个阶段,编写标签说明明确助手的表现期望,雇佣人员创建文档,例如收集 100,000 个高质量的理想问答对来微调基础模型,这个过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,由于微调成本较低,可每周或每天进行迭代。例如 Llama2 系列,Meta 发布时包括基础模型和助手模型,基础模型不能直接使用,助手模型可直接用于回答问题。
2025-01-06