Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是人工智能

Answer

人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。

最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机执行。

然而,像“根据照片判断一个人的年龄”这类任务,我们不清楚大脑完成此任务的具体步骤,无法明确编程,这类任务正是人工智能感兴趣的。

AI 分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。

人工智能术语包括:

  • 机械学习:学习输入输出,从 A 到 B 的映射。是让电脑在不被编程的情况下自己学习的研究领域。
  • 数据科学:分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。
  • 神经网络/深度学习:有输入层、输出层、中间层(隐藏层)。
Content generated by AI large model, please carefully verify (powered by aily)

References

人工智能简介和历史

译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅“根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

学习笔记:AI for everyone吴恩达

机械学习:学习输入输出,从A到B的映射。所以一般都有个运行的AI系统,即输入A必然会输出B的软件。更系统的定义是,让电脑在不被编程的情况下,就可以自己学习的研究领域。(1959,Arthur Samuel)数据科学:分析数据集,从数据中获取一些结论与提示。挖掘数据来获取见解,输出结果往往是slide desk,如结论,PPT,项目结果。神经网络/深度学习:有输入层,输出层,中间层(隐藏层)

Others are asking
人工智能的相关岗位
以下是关于人工智能相关岗位的一些信息: 在企业中建构人工智能方面,智能音箱的工作流程包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序,但智能音箱面临着对每个用户需求单独编程导致公司需花费大量资金教育客户的困境。自动驾驶汽车方面,检测包括使用监督学习、多种传感器和技术,运动规划包括输出驾驶路径和速度。 人工智能团队的角色示例有:软件工程师,负责智能音箱中的软件编程工作,在团队中占比 50%以上;机器学习工程师,创建映射或算法,搜集和处理数据;机器学习研究员,负责开发前沿技术;应用机器学习科学家,解决面临的问题;数据科学家,检测和分析数据;数据工程师,整理数据;AI 产品经理,决定用 AI 做什么以及其可行性和价值。 在【已结束】AI 创客松中,参与同学的擅长领域和岗位包括:AI 2C 项目负责人、技术实践者、AI 算法开发、产品经理、程序员、产品体验设计师、咨询顾问/服务设计师等,他们在不同方向有着各自的优势和想法,如产品落地服务、多 Agent 处理任务流、宠物与 AI 结合、智能写作产品等。
2025-01-03
人工智能的定义
人工智能是一门研究如何使计算机表现出智能行为的科学。目前对其定义并不统一,以下是一些常见的定义: 从一般角度来看,人工智能是指通过分析环境并采取行动(具有一定程度的自主性)以实现特定目标来展示其智能行为的系统。基于人工智能的系统可以完全依赖于软件,在虚拟世界中运行(例如语音助手、图像分析软件、搜索引擎、语音和人脸识别系统)或者也可以嵌入硬件设备中(例如高级机器人、自动驾驶汽车、无人机或物联网应用程序)。 2021 年《AI 法案》提案第 3 条对人工智能的定义为:“AI 系统指采用附录 1 中所列的一种或多种技术和方法开发的软件,该软件能生成影响交互环境的输出(如内容、预测、建议或决策),以实现人为指定的特定目标。”其中,附录 1 列举的技术方法主要包括:机器学习方法(包括监督、无监督、强化和深度学习);基于逻辑和知识的方法(包括知识表示、归纳编程、知识库、影响和演绎引擎、符号推理和专家系统);统计方法,贝叶斯估计,以及搜索和优化方法。 最初,查尔斯·巴贝奇发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,对于像从照片判断人的年龄这类任务,我们无法明确解法,无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。 需要注意的是,“人工智能”的概念自 1956 年于美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法随着时代的发展在不断扩展。相比于《2018 年人工智能战略》,2021 年《AI 法案》提案对于人工智能的定义采取更加宽泛的界定标准。在 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。
2025-01-02
人工智能的历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因无法大规模拓展应用场景,且从专家提取知识、表现及保持知识库准确性复杂且成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 例如在创建国际象棋计算机对弈程序时,方法不断变化。 此外,人工智能和机器学习在金融服务行业应用已超十年,促成了诸多改进。大型语言模型通过生成式人工智能代表重大飞跃,正改变多个领域。 最初查尔斯·巴贝奇发明计算机,遵循受控计算理念。但有些任务如根据照片判断人的年龄无法明确编程,这类任务正是人工智能感兴趣的。如今金融、医学和艺术等领域正从人工智能中受益。
2025-01-02
人工智能伦理建设的基本内容
人工智能伦理建设的基本内容包括以下方面: 欧洲议会和欧盟理事会规定了人工智能的统一规则,并修正了一系列相关条例。回顾委员会任命的独立人工智能高级别专家组 2019 年制定的《值得信赖的人工智能的伦理准则》,其中包含七项不具约束力的人工智能伦理原则: 人类主体和监督:人工智能系统的开发和使用应为人服务,尊重人的尊严和个人自主权,其运行可由人类适当控制和监督。 技术稳健性和安全性:开发和使用方式应在出现问题时保持稳健,抵御试图改变其使用或性能的行为,减少意外伤害。 隐私和数据治理:符合现有隐私和数据保护规则,处理的数据应具备高质量和完整性。 透明度:开发和使用方式应允许适当的可追溯性和可解释性,让人类知晓交流或互动情况,并告知部署者系统的能力和局限性以及受影响者的权利。 多样性、非歧视和公平:开发和使用方式应包括不同参与者,促进平等获取、性别平等和文化多样性,避免歧视性影响和不公平偏见。 社会和环境福祉:有助于设计符合《宪章》和欧盟基础价值观的连贯、可信和以人为本的人工智能。 问责制。 人工智能能带来广泛的经济、环境和社会效益,如改进预测、优化运营等,但也可能根据应用、使用情况和技术发展水平产生风险,对受欧盟法律保护的公共利益和基本权利造成损害。 鉴于人工智能的重大影响和建立信任的必要性,其发展必须符合欧盟价值观、基本权利和自由,应以人为本,最终提高人类福祉。 为确保公众利益的高水平保护,应为所有高风险人工智能系统制定统一规则,这些规则应与《宪章》一致,非歧视,符合国际贸易承诺,并考虑相关准则。
2025-01-02
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
全球人工智能治理研究报告
以下是为您整合的关于全球人工智能治理研究报告的相关内容: 2024 AI 年度报告: 正确预测: 好莱坞级别的制作公司开始使用生成式人工智能来制作视觉特效。 美国联邦贸易委员会(FTC)或英国竞争与市场管理局(CMA)基于竞争理由调查微软/OpenAI 的交易。 在全球人工智能治理方面,进展非常有限,会超出高层次的主动承诺。 一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单。 随着推理工作负载和成本的显著增长,一家大型人工智能公司(例如 OpenAI)收购或建立了一个专注于推理的人工智能芯片公司。 错误预测: 有生成式人工智能媒体公司因其在 2024 年美国选举期间的滥用行为受到调查。 自我改进的人工智能智能体在复杂环境中(例如 AAA 级游戏、工具使用、科学探索)超越了现有技术的最高水平。 科技 IPO 市场解冻,至少看到一家以人工智能为重点的公司上市(例如 DBRX)。 2024 人工智能报告: 英国创建了世界上第一个人工智能安全研究所,美国迅速跟进。世界首个人工智能安全研究所 AISA 有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect,一个用于 LLM 安全评估的框架,涵盖核心知识、推理能力和自主能力等方面。英国宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 政府急于填补关键国家基础设施中的漏洞。英国通过其高级研究与发明机构(ARIA),花费了 5900 万英镑来开发一个“守门员”——一种先进的系统,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。随着攻击面扩大,开发人员加大了对“越狱”的研究。 2024 年人工智能现状: 全球治理的尴尬局面:全球在 AI 治理上的合作就像一场尴尬的华丽晚宴,大家都不知道该说些什么——承诺满天飞,实际行动却寥寥无几。 国家和地区法规的角力:疫情之后,越发魔幻的世界让我产生了世界在玩一种很新的“闭关锁国”,美国和欧盟等国家或地区正在通过有争议的国家层面立法,科技公司在这场与监管巨头的博弈中,还需面对自身可持续性目标的挑战——发展 AI 的排放量简直就像是一场全国范围的 SUV 自驾游,环保得让人哭笑不得。
2025-01-02