ChatGPT 是一种由 OpenAI 推出的模型或服务,目前依赖 GPT 系列模型来运转。它能够生成新的内容,如文本等。
ChatGPT 的基本概念是从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成类似的文本,能从提示开始继续生成类似于训练内容的文本。
其神经网络由简单元素组成,操作也简单,但能产生成功类似于网络、书籍等内容的文本。它根据训练材料中的“传统智慧统计数据”提取“连贯的文本线索”,生成的文本接近人类所产生的。
此外,有推特博主的英语老师制作了基于 ChatGPT 的 GPT 工作流用于英文学习,具体使用方法包括将特定 prompt 喂给 ChatGPT ,让其扮演美国好朋友进行交流,还能进行对话回顾、推荐任务等,以强化口语、听力和阅读。
Gen AI/Generative AI是“生成式人工智能”正式称呼。Generative AI是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而AIGC指的是由人工智能生成的内容的创作方式,实际上是Generative AI的应用结果。[heading1]问题四、ChatGPT是什么?[content]从OpenAI的官网中可以查询到,在2022年宣发时,OpenAI称ChatGPT是一种模型。但是同样是在官网中查询帮助页面,发现这里称ChatGPT是一种服务。而我们使用的ChatGPT目前是依赖GPT系列模型来运转的。不做任何怀疑论上的揣摩,从公开收集的资料中可以看出,早些年OpenAI推出了一个叫ChatGPT的模型,但目前我们所熟知的ChatGPT逐渐演变成了一种可以兼容多种GPT模型的聊天应用(服务)。
ChatGPT的基本概念在某种程度上相当简单。从网络、书籍等来源中获取大量人类创作的文本样本。然后训练神经网络生成“类似”的文本。特别是让它能够从“提示”开始,然后继续生成“类似于训练内容”的文本。正如我们所见,ChatGPT中的实际神经网络由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常简单,基本上是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。但是,这个过程能够产生成功地“类似于”网络、书籍等内容的文本,这是非常卓越和出乎意料的。它不仅是连贯的人类语言,而且“说的话”是“遵循其提示”的,利用其“读到”的内容。它并不总是说出“全局意义上的话”(或对应于正确的计算),因为(例如,没有访问Wolfram|Alpha的“计算超能力”)它只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。ChatGPT的具体工程使其相当引人入胜。但是,最终(至少在它可以使用外部工具之前),ChatGPT仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。但是,其结果有多么类似于人类。正如我所讨论的,这表明了一些至少在科学上非常重要的事情:人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。ChatGPT已经隐含地发现了它。但是我们可能可以用语义语法、计算语言等明确地揭示它。ChatGPT在生成文本方面的表现非常出色,结果通常非常接近我们人类所产生的。那么这是否意味着ChatGPT像大脑一样工作呢?它的基本人工神经网络结构最终是基于大脑的理想化模型的。当我们人类生成语言时,许多方面的工作似乎是相当相似的,这似乎是非常可能的。
推特博主的英语老师制作了一个GPT工作流,基于每个人的日常需求生成定制素材。博主用了一段时间,简直超级棒,有外国同事问他周末是不是报了商务英语课哈哈。。。现在分享给大家具体使用方法:先把下面整段prompt喂给ChatGPT(建议开一个新的对话专门用来学习英文)然后ChatGPT会扮演你的美国好朋友,每当你输入英文和中文表达,ChatGPT都会返回更地道的表达,并且对其中的俚语部分加粗,更容易帮助你学习和记忆(将App提交到应用商店,我用了send out,chatgpt改成了push)同时针对你发送的话题,ChatGPT会举一反三,结合欧美流行的内容给出更多例子,帮助你更好理解和记忆(ChatGPT提供了一个美剧更新的例子,教会我一个新表达buzz)当你输入"Hey GPT,run the end of day task.",ChatGPT会输出今天的对话回顾,进行复习,并建议3个推荐的任务,以强化记忆1️⃣建议使用方式,开一个窗口,复制prompt2️⃣然后手机端打开这条历史记录3️⃣点右上角的🎧耳机图标,开始打电话4️⃣打电话又能练口语又能练听力。5️⃣结束之后看回顾,可以帮助阅读群友也写了一个类似的版本,并放在讯飞上做了尝试,效果不错