直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何学习IA知识

回答

学习 AI 知识可以从以下几个方面入手:

  1. 基础知识学习:掌握数学(如线性代数、概率论、微积分)、统计学和编程(如 Python)等基础知识,这是理解 AI 原理和算法的基石。
  2. 在线课程与教程:利用知名在线教育平台(如 Coursera、EdX、Udacity 等)上的 AI 相关课程,系统学习理论和实践。
  3. 阅读专业书籍:例如《人工智能:一种现代方法》《深度学习》等经典著作,深入了解 AI 的概念和技术。
  4. 实践项目:通过参与实际的 AI 项目,如开发图像识别模型、自然语言处理应用等,提高实践能力。
  5. 参加学术会议和研讨会:了解最新的研究成果和行业动态。
  6. 加入学习社区和论坛:与其他学习者和专业人士交流经验、分享知识、解决问题。
  7. 关注权威博客和公众号:获取最新的 AI 资讯和技术解读。
  8. 学习开源框架:如 TensorFlow、PyTorch 等,通过实际操作加深对 AI 技术的理解。
内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
可以开发一个完整的软件项目吗?可以把现有的vue2开发的uniapp项目转成vue3吗
在 AI 领域,开发一个完整的软件项目是可行的,但这需要综合考虑多个因素,如项目的规模、功能需求、技术难度以及开发团队的能力等。 关于将现有的 Vue2 开发的 Uniapp 项目转成 Vue3,理论上是可以实现的,但这是一个具有一定复杂性和挑战性的任务。需要对 Vue3 的新特性和语法有深入的了解,并且对原项目的架构和代码有清晰的把握。在转换过程中,可能需要处理诸如组件的迁移、API 的变化、依赖库的兼容性等问题。
2024-12-17
AI for social science 有哪些重要的资源
以下是一些关于 AI for social science 的重要资源: 1. 《人工智能权利法案蓝图》:其中提到了公民权利、公民自由和隐私方面的内容,包括言论自由、投票自由以及免受歧视、过度惩罚、非法监视和侵犯隐私等,还涉及机会均等和获取关键资源或服务等方面。 2. AGI 万字长文(下)| 2024,分叉与洪流:如果从“AGI 已经出现”的阴谋论出发,AGI 所需要的基本资源无法回避,在能源领域,如可控核聚变技术,在 AI 的协助下有了一定进展。 3. 4.5.2016 EN:通过耦合注册表中的信息,研究者能够在诸如心血管疾病、癌症和抑郁症等广泛的医疗状况方面获得极有价值的新知识。在社会科学领域,基于注册表的研究使研究者能够获得关于失业、教育等一系列社会状况与其他生活状况的长期相关性的重要知识。通过注册表获得的研究结果提供了坚实、高质量的知识,可为基于知识的政策的制定和实施提供基础,提高许多人的生活质量,并提高社会服务的效率。
2024-12-10
普通人可以用IA怎么赚钱
以下是一些普通人利用 AI 赚钱的方式: 1. 技术开发:像独立博客 IAIUSE 主理人一样,将 AI 技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 2. 协助个人:利用 AI 帮助个人重构知识体系,实现个人成长。 3. 医疗领域:在医疗方面,C 端的 AI 陪诊、AI 助理等可以成为获取医疗数据的途径。但短期内,AI 医疗 C 端直接付费较困难,满足 2B/2G 的降本需求是主要模式。更长期来看,AI 有可能提供“人体健康模型”,实现防未病和真正的个性化诊疗。不过,医生使用 AI 助手动力不足,短期内“护士助手”可能更适合国情。
2024-12-05
在comfyui中节点报错UNETLoader Error while deserializing header: MetadatalncompleteBuffei
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错‘UNETLoader Error while deserializing header: MetadatalncompleteBuffei’”的信息,难以准确判断问题的具体原因和解决办法。这可能是由于多种因素导致的,比如模型文件损坏、软件版本不兼容、配置错误等。建议您检查模型文件的完整性,确保 ComfyUI 软件为最新版本,并检查相关配置是否正确。如果问题仍然存在,您可以尝试在相关的技术论坛或社区中搜索类似问题,以获取更多可能的解决方案。
2024-12-04
nvidia tensorrt是什么
NVIDIA TensorRT 是基于 CUDA 和 cuDNN 的高性能深度学习推理优化引擎,是一种在 NVIDIA 硬件上部署光速推理的解决方案。它包含了许多优化,但只能在 NVIDIA 硬件上运行。 随着大模型参数规模的不断增长,在有限的算力资源下,提升模型的推理速度逐渐变为一个重要的研究方向。常用的推理加速框架包含 TensorRTLLM 等。TensorRTLLM 由 NVIDIA 开发,是高性能推理框架,详细的推理文档见: 。 此外,NVIDIA NIM 基于 NVIDIA Triton Inference Server、NVIDIA TensorRT、NVIDIA TensorRTLLLLM 等强大的推理引擎构建,是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程。
2024-12-01
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
如何通过AI构建自己的知识体系,比如通识教育,英语口语,以及子女学习辅导
以下是关于如何通过 AI 构建自己在通识教育、英语口语、子女学习辅导方面知识体系的建议: 通识教育: 1. 把学习任务切割成小单元,利用 AI 构建专属智能体。 2. 定期根据结果反馈调整智能体。 3. 审视学习流程,更多地应用 AI 。 4. 培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识。 英语口语: 1. 利用智能辅助工具,如 Grammarly 进行写作和语法纠错,改进表达和写作能力。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 使用自适应学习平台,如 Duolingo 获得量身定制的学习计划和个性化内容练习。 4. 与智能对话机器人,如 ChatGPT 进行会话练习和对话模拟,提升交流能力和语感。 子女学习辅导: 1. 对于英语学习,可参考上述英语口语的学习方法。 2. 数学学习方面,使用自适应学习系统,如 Khan Academy 获得个性化学习路径和练习题;利用智能题库和作业辅助工具,如 Photomath 获取问题解答和解题步骤;借助虚拟教学助手,如 Socratic 解答问题、获取教学视频和答疑服务;参与交互式学习平台,如 Wolfram Alpha 的课程和实践项目进行数学建模和问题求解。 需要注意的是,在使用 AI 辅助学习的过程中,要结合传统学习方法,仔细甄别生成的内容,以取得更好的学习效果。
2024-12-22
如何系统学习AI知识
以下是系统学习 AI 知识的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI,还可以: 1. 了解基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-12-20
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么学习ai知识
以下是新手学习 AI 知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-12-19
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。 2. 知识表示:如属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括向量数据库、关系型数据库和知识图谱。知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,允许智能体实时检索和整合最新外部信息。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合进世界模型。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的理解。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法。
2024-12-19
我应该如何学习AGI
学习 AGI 是一个长期的过程,需要耐心和持续的努力。以下是一些建议: 1. 参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 2. 应用方面:深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 3. 分析方面:大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 记住,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的知识体系,并能够在这一领域取得成就。同时,找到适合自己的学习方式和兴趣点最为重要,学以致用,通过学习分享不断填补知识的缝隙来成长。
2024-12-22
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-22
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-22
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
小白如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型及原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于多种学习方式。 生成式 AI 可生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-21