Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型的局限性

Answer

大模型存在以下局限性:

  1. 知识的局限性:模型自身的知识完全源于训练数据,现有的主流大模型(如 ChatGPT、文心一言、通义千问等)的训练集基本抓取网络公开数据用于训练,对于一些实时性、非公开或离线的数据无法获取,导致部分知识缺失。
  2. 幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙,因此存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。
  3. 数据安全性:对于企业来说,数据安全至关重要,企业通常不愿意承担将自身私域数据上传第三方平台进行训练导致的数据泄露风险。
  4. 在图灵测试游戏中,如果 AI 模型没有调用工作流,Agent 就会直接回答问题,导致游戏状态无法正确跳转,对局失败。为解决此问题,虽采取了增强模型调用能力和增加容错机制等措施,但开发难度大,且只要大模型不调用工作流一次,后续不调用的概率会很大。模型总会优先调用知识库进行问题回复,不设置知识库时,模型提的问题可能很发散,与图灵测试初衷违背。把知识库中的数据放到代码里虽可缓解问题,但反程序设计的解耦和逻辑,修改麻烦。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

OpenAI:我憋了个新大招儿,它叫o1-preview/mini

其次,今天凌晨第一批吃螃蟹的用户已经体验过了,从各群、各微、各推的反馈来看,复杂问题的思考过程长达30s,而相对简单的问题则要5-10s之间。就连OpenAI给出的模型速度示例中,o1-preview的速度也是偏慢的。最后,让人有点郁闷的是,新模型(o1-preview/mini)的使用条数太少了,而且冷却时间相当长,按照少数AI先锋(@陈财猫)的测试,o1-preview的冷却时间长达7天。这一周几十条的用量也顶多算是打打牙祭...最后,我想分享一些个人的思考和感悟。随着这两年来对模型发展的观察,我看到了一个明显的趋势:仅仅依靠生成式应用的场景是相当有限的。尤其是toB领域,我们遇到的更多是对准确性要求极高的场景,甚至需要100%准确的情况,比如安全领域和金融领域,这些都是差之毫厘谬之千里的业务。而大模型的局限性也是常常在于此(幻觉)。但推理模型的准确率不断攀升、甚至达到完全可信的地步确实是一件非常惊喜又恐怖的事情。之前让模型干创意的活儿,现在又能干精确的活儿,这属于全场景覆盖!这意味着AI技术可以渗透到更多行业、更多高精尖业务中去!同时,我回想起老师曾经对我说过的一句话:"不管现在的大模型处理速度多慢,操作多么繁琐,只要能保证最终结果的正确性,它就拥有无限的可能性。"我觉得老师的话不无道理,不要看现在新模型的推理速度慢,但这些都可以通过增配新硬件去解决,只要钱到位,这都不是问题。况且,这也可能是慢思考系统的一种呢?你说对吧!再者,在今年上半年,甚至是上个月,很多人还在担忧大模型的前景。但OpenAI推出的新模型无疑给这个行业注入了一剂强心剂,为整个领域带来了新的活力和希望。这是令人赞叹和振奋的。

我们居然开发出了图灵测试游戏!

游戏最大的不确定因素是,如果AI模型没有调用工作流,Agent就会直接回答问题,这会导致游戏状态无法正确跳转,对局失败(如果不用大模型的话,体验会很好,可是AI程度在哪里?)为了解决这个问题,我们增强了模型的调用能力,并在工作流中增加了多个容错机制,尽可能减少错误发生。但开发难度不小,并且只要大模型不调用工作流一次,那么后续大模型不调用工作流的概率会很大。在多次试错中我们发现,模型总会优先调用知识库(给模型提供了很多候选对话,以激发用户的游戏兴趣)进行问题回复,尽管已经将知识库的触发条件上升到最严格;而不设置知识库的情况下,模型提的问题可能很发散,与图灵测试的初衷比较违背(根本原因还是模型水平不够)。一个折中的解决办法是,把知识库中的数据放到代码里(没错,类似于把css和js写到html中)然后删除掉知识库,这样可以缓解模型调用知识库的问题,但却是很反程序设计的解耦和逻辑,并且修改起来更麻烦。

Others are asking
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
文心一言的开发公司是谁,功能特点,优势性和局限性请帮我简要概括
文心一言是由百度开发的全新一代知识增强大语言模型。 功能特点: 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。 在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。 各项能力表现均衡且大部分能力水平较高。 能力栈广泛,可应用场景较多,重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 优势: 能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。 局限性: 从某些测试和感觉来看,其能力水平可能在 GPT3 的阶段,输出内容的可靠性与 ChatGPT 相比还有差距。
2024-11-22
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21
怎样操作来源模型
以下是关于操作来源模型的相关内容: 对于某些模型,如 Llama3.1 8B Instruct,操作方式如下: 1. 选择自定义提示词(也可选择预定义的话题,即黑色按钮,黑色按钮会有新手使用指引)。然后左边会出现熟悉的 chat 界面。 2. 输入对话内容,等待左右两边的内容生成。若右边的分析未刷新,在相关按钮间切换。 3. Activation Mode 可获得整段的推理判断;Attribution Mode 需选中一个 token,它会分析对应的最大关联内容。 对于 ComfyUI 玩 SDXL 的模型,操作要点包括: 1. 添加噪波:disable,运行后操作:fixed,步数:30,开始降噪步数:20,结束降噪步数:30,返回噪波:disable。 2. 若将 refiner 的模型连上提示词导致第一个 base 模型的链接断开,可通过加入新节点(右键点击【新建节点】【实用工具】【Primitive 元节点】),在文本节点上单击右键选择【转换文本为输入】,将元节点与文本节点相连接,复制出正负提示词节点分别给 base 模型和 refiner 模型,再将 base 模型的一套输出给第一个采样器节点,refiner 模型的一套输出给第二个采样器节点,使两个模型同时起作用。 对于 Tusiart 模型: 1. 首页包括模型、帖子、排行榜,可查看大手子炼成的模型、图片,不同模型有 checkpoint 和 lora 等标签,还有 XL 标签属于 SDXL 新模型,点击可看模型详细信息及返图区。 2. 基础模型(checkpoint)是生图必需的,任何生图操作必须选定,lora 是低阶自适应模型,可有可无,但对细节控制有价值。 3. ControlNet 可控制图片中特定图像,VAE 类似于滤镜可调整生图饱和度,选择 840000 即可。 4. Prompt 提示词是想要 AI 生成的内容,负向提示词 Negative Prompt 是想要 AI 避免产生的内容。
2025-02-21
不同ai模型的应用场景
以下是不同 AI 模型的应用场景: 基于开源模型: Civitai、海艺 AI、liblib 等为主流创作社区,提供平台让用户利用 AI 技术进行图像创作和分享,用户无需深入了解技术细节即可创作出较高质量的作品。 基于闭源模型: OpenAI 的 DALLE 系列: 发展历史:2021 年初发布 DALLE,2022 年推出 DALLE 2,2023 年发布 DALLE 3,不断提升图像质量、分辨率、准确性和创造性。 模型特点:基于变换器架构,采用稀疏注意力机制,DALLE 2 引入 CLIP 模型提高文本理解能力,DALLE 3 优化细节处理和创意表现。 落地场景:2C 方面可控性强于 Midjourney,但复杂场景和细节处理能力不如 Midjourney;2B 方面与 Midjourney 场景类似。 商业化现状:通过提供 API 服务,使企业和开发者能集成到应用和服务中,采取分层访问和定价策略。 伦理和合规性:加强对生成内容的审查,确保符合伦理和法律标准。 大模型: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:用于代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 这些只是部分应用场景,随着技术进步和模型优化,AI 模型在未来可能会拓展到更多领域和场景。同时,也需注意其在隐私、安全和伦理方面的挑战。
2025-02-21
大模型和小模型区别是什么?是否大模型都属于生成式AI,小模型属于判别式AI,为什么大模型有幻觉小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数数量:大模型通常具有更多的参数和更复杂的架构,能够处理更大量和更复杂的数据。 2. 能力和性能:大模型在语言理解、生成等任务上往往表现更出色,能够生成更准确、丰富和连贯的内容。 3. 应用场景:大模型适用于广泛的通用任务,而小模型可能更专注于特定的、较狭窄的领域。 并非大模型都属于生成式 AI,小模型都属于判别式 AI。生成式 AI 能够生成新的内容,如文本、图片等;判别式 AI 则主要用于对输入进行分类或判断。模型的分类与其大小并无直接的必然联系。 大模型出现幻觉的原因主要是其通过训练数据猜测下一个输出结果,可能会因错误或不准确的数据导致给出错误的答案。而小模型相对来说数据量和复杂度较低,出现幻觉的情况相对较少,但这并非绝对,还取决于模型的训练质量、数据的准确性等多种因素。优质的数据集对于大模型减少幻觉现象非常重要。
2025-02-21
如果想用AI创作表情包,推荐用什么AI大模型
如果您想用 AI 创作表情包,以下是一些推荐的 AI 大模型及相关平台: 1. MewXAI:这是一款操作简单的 AI 绘画创作平台。其功能包括 MX 绘画,拥有众多超火模型和上百种风格,支持文生图、图生图;MX Cute 是自研的可爱风动漫大模型;MJ 绘画在表情包制作等方面表现出色;还有边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等多种功能。访问地址:https://www.mewxai.cn/ 2. 在开发 AI Share Card 插件的过程中,选用的是 GLM4flash 模型。它具有较长的上下文窗口、响应速度快、并发支持高、免费或价格较低等优点。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21