直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型的局限性

回答

大模型存在以下局限性:

  1. 知识的局限性:模型自身的知识完全源于训练数据,现有的主流大模型(如 ChatGPT、文心一言、通义千问等)的训练集基本抓取网络公开数据用于训练,对于一些实时性、非公开或离线的数据无法获取,导致部分知识缺失。
  2. 幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙,因此存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。
  3. 数据安全性:对于企业来说,数据安全至关重要,企业通常不愿意承担将自身私域数据上传第三方平台进行训练导致的数据泄露风险。
  4. 在图灵测试游戏中,如果 AI 模型没有调用工作流,Agent 就会直接回答问题,导致游戏状态无法正确跳转,对局失败。为解决此问题,虽采取了增强模型调用能力和增加容错机制等措施,但开发难度大,且只要大模型不调用工作流一次,后续不调用的概率会很大。模型总会优先调用知识库进行问题回复,不设置知识库时,模型提的问题可能很发散,与图灵测试初衷违背。把知识库中的数据放到代码里虽可缓解问题,但反程序设计的解耦和逻辑,修改麻烦。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

OpenAI:我憋了个新大招儿,它叫o1-preview/mini

其次,今天凌晨第一批吃螃蟹的用户已经体验过了,从各群、各微、各推的反馈来看,复杂问题的思考过程长达30s,而相对简单的问题则要5-10s之间。就连OpenAI给出的模型速度示例中,o1-preview的速度也是偏慢的。最后,让人有点郁闷的是,新模型(o1-preview/mini)的使用条数太少了,而且冷却时间相当长,按照少数AI先锋(@陈财猫)的测试,o1-preview的冷却时间长达7天。这一周几十条的用量也顶多算是打打牙祭...最后,我想分享一些个人的思考和感悟。随着这两年来对模型发展的观察,我看到了一个明显的趋势:仅仅依靠生成式应用的场景是相当有限的。尤其是toB领域,我们遇到的更多是对准确性要求极高的场景,甚至需要100%准确的情况,比如安全领域和金融领域,这些都是差之毫厘谬之千里的业务。而大模型的局限性也是常常在于此(幻觉)。但推理模型的准确率不断攀升、甚至达到完全可信的地步确实是一件非常惊喜又恐怖的事情。之前让模型干创意的活儿,现在又能干精确的活儿,这属于全场景覆盖!这意味着AI技术可以渗透到更多行业、更多高精尖业务中去!同时,我回想起老师曾经对我说过的一句话:"不管现在的大模型处理速度多慢,操作多么繁琐,只要能保证最终结果的正确性,它就拥有无限的可能性。"我觉得老师的话不无道理,不要看现在新模型的推理速度慢,但这些都可以通过增配新硬件去解决,只要钱到位,这都不是问题。况且,这也可能是慢思考系统的一种呢?你说对吧!再者,在今年上半年,甚至是上个月,很多人还在担忧大模型的前景。但OpenAI推出的新模型无疑给这个行业注入了一剂强心剂,为整个领域带来了新的活力和希望。这是令人赞叹和振奋的。

我们居然开发出了图灵测试游戏!

游戏最大的不确定因素是,如果AI模型没有调用工作流,Agent就会直接回答问题,这会导致游戏状态无法正确跳转,对局失败(如果不用大模型的话,体验会很好,可是AI程度在哪里?)为了解决这个问题,我们增强了模型的调用能力,并在工作流中增加了多个容错机制,尽可能减少错误发生。但开发难度不小,并且只要大模型不调用工作流一次,那么后续大模型不调用工作流的概率会很大。在多次试错中我们发现,模型总会优先调用知识库(给模型提供了很多候选对话,以激发用户的游戏兴趣)进行问题回复,尽管已经将知识库的触发条件上升到最严格;而不设置知识库的情况下,模型提的问题可能很发散,与图灵测试的初衷比较违背(根本原因还是模型水平不够)。一个折中的解决办法是,把知识库中的数据放到代码里(没错,类似于把css和js写到html中)然后删除掉知识库,这样可以缓解模型调用知识库的问题,但却是很反程序设计的解耦和逻辑,并且修改起来更麻烦。

其他人在问
文心一言的开发公司是谁,功能特点,优势性和局限性请帮我简要概括
文心一言是由百度开发的全新一代知识增强大语言模型。 功能特点: 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。 在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。 各项能力表现均衡且大部分能力水平较高。 能力栈广泛,可应用场景较多,重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 优势: 能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。 局限性: 从某些测试和感觉来看,其能力水平可能在 GPT3 的阶段,输出内容的可靠性与 ChatGPT 相比还有差距。
2024-11-22
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
ai模型种类
以下是一些常见的 AI 模型: OpenAI 模型: GPT4 Beta:一组改进 GPT3.5 的模型,可以理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,可以理解并生成自然语言或代码。 DALL·E Beta:可以在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper Beta:可以将音频转换为文本的模型。 Embeddings:一组可以将文本转换为数字形式的模型。 Codex Limited Beta:一组可以理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:可以检测文本是否敏感或不安全的微调模型。 GPT3:一组可以理解和生成自然语言的模型。 智谱·AI 模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。 WebGLM2B MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%。 MathGLM500M MathGLM100M MathGLM10M MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM。 ProductHunt 2023 年度最佳产品榜单中的模型: GPT4(免费可用):与人类水平相当的 LLM,是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型(接受图像和文本输入,输出文本),在各种专业和学术基准测试中表现出与人类相当的水平。 Midjourney v5(免费):最新、最先进的模型,具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃。 Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。
2024-12-19
大模型成本趋势
大模型的成本趋势如下: 目前存在唱衰大模型的观点,认为其难以找到可商用场景,部分功能存在幻觉问题,且算力成本高,导致商业模式难以形成闭环。 但也有观点认为,关于算力成本,已有许多解决方案,如模型蒸馏、苹果的端云方案等,今年内算力成本问题有望不再是难题。 对于不同规模的模型,小模型在某些特定应用中有其优势且足够好用,但大模型会解锁新的有价值的应用程序。不过并非所有应用都能证明大模型的成本合理。 在多模态大模型方面,随着数据集和模型规模扩大,传统模型带来巨大计算量。研究人员利用现成训练好的单模态基础模型,可减少多模态训练费用、提升效率。不同模态模型分开训练,如何实现模态连接和协同推理是核心挑战。
2024-12-19
大模型成本
大模型的成本主要通过 token 数量来计算。普通常见单词使用一个 token,不常见单词可能被拆分从而消耗更多 token。一般 300 个单词约需 400 个 token,token 消耗通常比单词数多出 33%左右。 以 GPT 为例,一个成年人一小时阅读约 30000 个词,按转化率约需 40000 个 token。GPT3.5 每 1000 个 token 需 0.002 美元,供成年人阅读使用 1 小时消耗 0.08 美元(8 美分);GPT4 则需 2.4 美元。 在搭建 AI 微信聊天机器人方面,极简未来平台的费用取决于使用的大模型和调用次数,按 Token 数量计费。如使用 GPT3.5 模型每次对话大约消耗不到 20 积分,平台有签到免费领积分福利,也可充值,19 元可兑换 10000 积分,能满足日常使用好几个月。
2024-12-19