Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

对于70后,学ai,怎么学

Answer

对于 70 后学习 AI,以下是一些建议:

  1. 明确学习目标:确定自己学习 AI 的具体方向和应用场景,例如是对 AI 绘画感兴趣,还是希望将 AI 应用于工作中的数据分析等。
  2. 基础知识学习:可以通过在线课程、书籍等途径,学习数学(如线性代数、概率论)、编程(如 Python)等基础知识。
  3. 选择适合的学习路径:可以参考成功的案例,如 AI 教父辛顿的经历。辛顿在多次尝试和坚持后,最终在神经网络领域取得成就。
  4. 关注行业动态:了解 AI 在教育等领域的最新应用和发展趋势,例如未来教育中 AI 与人类教师的协作方式,以及个性化学习的普及。
  5. 实践与应用:通过实际项目或案例进行练习,将理论知识应用到实际中。

需要注意的是,学习 AI 是一个长期的过程,需要保持耐心和坚持不懈的精神。

Content generated by AI large model, please carefully verify (powered by aily)

References

知识分子:2024 诺贝尔物理奖给了 AI 教父辛顿,本人回应“没有想到”

1970年获得实验心理学学士学位后,对大学本科学习颇感失望的辛顿放弃了剑桥大学,成了一名木匠。他一边做书架、木门,一边思考人类大脑的运作原理,自认为这是他喜欢的生活方式。作了一年多之后又有新想法了,因为靠木匠谋生并不是件容易的事情,对了解大脑也无帮助,所以,辛顿又考虑回归学术界,并决定尝试一个新方向:人工智能。对如此奇特多变的求学经历,辛顿谑称自己患上了“学习上的过动症”,在一个专业上无法稳定下来。但其实不然,辛顿始终都在寻求自己的方向。前一段,是多次缀学的“传奇”,后面的经历,便说明了辛顿认定方向后坚持不懈的“传奇”精神。他1972年去了爱丁堡,进入苏格兰爱丁堡大学攻读博士,这次可能算是走对路了,因为那儿有一位非常聪明的叫希金斯(Christopher Higgins,1923 – 2004)的教授,正在研究神经网络,这是辛顿长年累月思考认为可以用机器实现大脑功能的方向。但是,辛顿好像总是运气不佳,就在他开始追求这个目标时,希金斯教授改变了他的学术初衷,“叛变”到了AI的符号主义一边,认为联结主义的神经网络是无稽之谈。这显然是受了MIT的AI大佬闵斯基的影响。闵斯基的《Perceptron》一书于69年出版,几乎摧毁了神经网络领域,使得1972年成为神经网络有史以来最低潮的时期。因此,希金斯试图说服辛顿停止做神经网络,转做符号人工智能。于是辛顿说,再给我六个月,我会证明这是有效的;然后每六个月之后,辛顿再跟希金斯说与上次一模一样的话。两人磨磨唧唧地争论了五年,辛顿终于坚持研究备受冷落的神经网络并熬到了博士毕业。

MQ:AI + 教育 | 实践与探索

2023年起,每个教育工作者,每个父母都应该意识到,我们孩子将要面对的世界,对教和学的要求,已经完全不一样了。真正的个性化学习时代已经到来。请回想一下,我们小时候的学习路径:从小到大在同一个大班(40-70人)接受同一个老师授课,学习同样的教材,完成同样的作业。而2016年,我去美国湾区访校,每个学校的管理层都在讨论如何为孩子提供personalized learning(个性化学习)。比如Khan Lab School(可汗学院旗下的K12学校),允许在孩子准备好的时候随时申请跳级,或者觉得自己没有ready,可以申请停留在之前的年级。7年前的访校给我带来了极大的认知震撼。虽然早就听说过项目制学习,个性化学习,但是看到每个学校积极落地的形态,带来的冲击完全不一样。7年后的今天,随着生成式AI智力崛起,个性化学习将逐渐普及到每个孩子。在未来教育的演变中,AI将作为教育生态系统的一部分,与人类教师共同协作,为孩子们提供完全不一样的学习体验。我们可能逐渐会看不同形态的AI +混合式教学,比如,让逝去的先贤和学生圆桌对谈。在那时,孩子们能够制定自己的学习节奏,根据自己的兴趣和目标和AI Tutor协商定制学习路径和学习材料。他们还可以用「费曼学习法」把学到的东西教给AI,从AI tutor处获得即时反馈。教育工作者不再仅仅是知识的传授者,而是成为学习的引导者以及支持学生在AI元年成长的伙伴。我们将有更多的时间和精力去关注孩子的全人发展,比如培养他们的创造力和社交智慧等。越是AI时代,这些有人味儿的元素可能会更珍贵。未来3年,对于教育从业者来说,任何能提升人机协作效率的点都蕴藏着巨大的机遇,比如AI作业批改,AI备课,AI定制教育规划,AI学前启蒙等。用4.0 V批改阅读理解题

苦涩的教训 The Bitter Lesson

of the special features of the game,but all those efforts proved irrelevant,or worse,once search was applied effectively at scale.Also important was the use of learning by self play to learn a value function(as it was in many other games and even in chess,although learning did not play a big role in the 1997 program that first beat a world champion).Learning by self play,and learning in general,is like search in that it enables massive computation to be brought to bear.Search and learning are the two most important classes of techniques for utilizing massive amounts of computation in AI research.In computer Go,as in computer chess,researchers' initial effort was directed towards utilizing human understanding(so that less search was needed)and only much later was much greater success had by embracing search and learning.In speech recognition,there was an early competition,sponsored by DARPA,in the 1970s.Entrants included a host of special methods that took advantage of human knowledge---knowledge of words,of phonemes,of the human vocal tract,etc.On the other side were newer methods that were more statistical in nature and did much more computation,based on hidden Markov models(HMMs).Again,the statistical methods won out over the human-knowledge-based methods.This led to a major change in all of natural language processing,gradually over decades,where statistics and computation came to dominate the field.The recent rise of deep learning in speech recognition is the most recent step in this consistent direction.Deep learning methods rely even less on human knowledge,and use even more computation,together with learning on huge training sets,to produce dramatically better speech recognition systems.As in the games,researchers always tried to make systems that worked the way the researchers thought their own minds worked---they tried to put that knowledge in their systems---but it proved ultimately counterproductive,and a colossal waste of researcher's time,when,through Moore's law,massive computation became available and a means was found to put it to good use.In computer vision,there has been a similar pattern.Early methods conceived of vision as searching for edges,or generalized cylinders,or

Others are asking
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
如何让COMFYUI使用我的INTEL A770显卡?
要让 ComfyUI 使用您的 INTEL A770 显卡,以下是一些相关的步骤和信息供您参考: 首先,ComfyUI 本地安装的方法主要有以下几种: 1. 命令行安装: 如果您已经安装过 SD WebUI,可以跳到第二步。首先需要打开系统 Terminal,不同系统的 Terminal 可能有所不同。 Windows 用户:建议在有 NVIDIA 显卡的电脑上使用。需要下载 Miniconda3,输入相关命令进行安装,然后安装 pytorch 的 nightly 版本。 Mac 用户:安装需要根据电脑芯片不同输入不同代码。下载 Miniconda3 并输入相关命令进行安装,最后安装 pytorch。 2. 安装包安装:仅支持 Windows 系统且显卡必须是 Nivida。下载地址是,下载最新版本解压即可使用。 关于 ComfyUI 的硬件配置: ComfyUI 相比 WebUI 配置更低、系统资源占用更少、出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡,内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。 需要注意的是,目前 ComfyUI 对于 INTEL A770 显卡的支持情况可能不太明确,您可能需要根据实际情况进行尝试和调整。
2024-10-10
介绍两款好用免费的文字转音频的AI工具
以下为您推荐两款好用免费的文字转音频的 AI 工具: 1. 飞书妙记(https://www.feishu.cn/product/minutes):飞书的办公套件之一。 2. 通义听悟(https://tingwu.aliyun.com/home):阿里推出的 AI 会议转录工具。 另外,您还可以在 WaytoAGI 的工具网站上查看更多相关工具:https://waytoagi.com/sites/category/50 。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-01
到底什么是大家说的AI
AI 分为 ANI 和 AGI 。ANI 即 artificial narrow intelligence 弱人工智能,它只能做一件事,比如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。AGI 即 artificial general intelligence ,能做任何人类可以做的事。 简单地说,AI 是让计算机或机器能像人类一样思考和学习的技术。比如在小学课堂上,会以学生能理解的语言来解释,先和学生互动,听听他们口中的 AI ,再引出概念。 从专业术语角度,机械学习是学习输入输出,从 A 到 B 的映射,是让电脑在不被编程的情况下自己学习的研究领域。数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 、项目结果等。神经网络/深度学习则有输入层、输出层、中间层(隐藏层)。 数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。通常以表格形式出现,每一列代表一个特定变量,每一行对应于某一成员的数据集的问题。数据分为结构化数据与非结构化数据,结构化数据可以放在巨大的表格中,非结构化数据如图片、视频、文本,机器处理起来更难。获取数据的方法有手动标注、观察行为、网络下载。使用数据时,如果开始搜集数据,可以马上将数据展示或者喂给某个 AI 团队。但数据不一定多就有用,有时数据中会出现不正确、缺少的数据,这就需要有效处理数据。
2025-02-01
字节有哪些AI产品
字节在 AI 领域推出了众多产品,包括从生产力到娱乐陪伴,从对话产品到 Agent 工具再到文生图等十几个 AI 应用,还推出了 AI 硬件,如今年 10 月能与豆包语音对话的 Ola Friend 耳机,近期还在研发 AI 眼镜。 生成 Logo 的 AI 产品有: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 AI 面试官的相关产品有: 1. 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和发送邀约。 2. 海纳 AI 面试:在线自动面试、评估,精准度高达 98%,效率提升 5 倍以上,改善候选人体验,到面率提升。 3. InterviewAI:在线平台,提供职位相关问题和 AI 生成的推荐答案,候选人用麦克风回答,收到评估、建议和得分。
2025-02-01
免费生成logo的智能ai网站
以下是一些免费生成 logo 的智能 AI 网站: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 另外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。
2025-01-31
生成logo的智能ai
以下是一些可以生成 logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 此外,还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 藏师傅教您用 AI 三步制作任意公司的周边图片,流程如下: 1. 获取 Logo 图片的描述。 2. 根据 Logo 图片的描述和生成意图生成图片提示词。 3. 将图片和提示词输入 Comfyui 工作生成。 即梦 AI 智能画布制作 Logo 的步骤: 1. 在即梦左侧点击「智能画布」,「上传图片」上传一张 logo 图,点击「图生图」输入描述词,参考程度为 55,选择「轮廓边缘」,点击立即生成。 2. 右侧图层可看到 4 张图,选择喜欢的图;若不喜欢,可用局部重绘、消除笔等功能调整,也可重新生成。
2025-01-31
好用的翻译ai
以下是一些好用的翻译 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 如果您想利用 AI 学习一门外语,可以参考以下方式: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助您提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。
2025-01-31