Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些ASR方案

Answer

以下是一些常见的 ASR 方案:

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

这类数字人强调自驱动,人为干预更少,技术实现上更加复杂,一个最简单的算法驱动的数字人大致流程如下:其中三个核心算法分别是:1.ASR(Automatic Speech Recognition,语音识别):我们希望和数字人的交互跟人一样以对话为主,所以算法驱动的第一步就是语音识别,它能将用户的音频数据转化为文字,便于数字人理解和生成回应。2.AI Agent(人工智能体):充当数字人的大脑,可以直接接入大语言模型,强调Agent的概念是为了让数字人拥有记忆模块等更加真实。3.TTS(Text to Speech,文字转语音):数字人依靠LLM生成的输出是文字,为了保持语音交互一致性,需要将文字转换为语音,由数字人。

TTS 数据整理

|类别|名称|描述|链接|详情||-|-|-|-|-||ASR-多语种|mozilla common voice|提供各种语言的音频,目前14122小时87中语言|[https://commonvoice.mozilla.org/zh-CN/datasets](https://commonvoice.mozilla.org/zh-CN/datasets)|||ASR-多语种|OpenSLR|提供各种语言的合成、识别等语料|[https://www.openslr.org/resources.php](https://www.openslr.org/resources.php)|||ASR-多语种|CI-AVSR|cantonese粤语车内auido-visual数据.8.3小时|[https://github.com/HLTCHKUST/CI-AVSR](https://github.com/HLTCHKUST/CI-AVSR)|||ASR-多语种|open speech corpora|各类数据搜集|[https://github.com/coqui-ai/open-speech-corpora](https://github.com/coqui-ai/open-speech-corpora)|||ASR-多语种|Hindi|1111小时|[https://www.openslr.org/118/](https://www.openslr.org/118/)|||ASR-多语种|Samrómur Queries 21.12|Samrómur Icelandic Speech corpus 20小时|[https://www.openslr.org/116/](https://www.openslr.org/116/)|||ASR-多语种|Samrómur Children 21.09|Icelandic Speech from children|[https://www.openslr.org/117/](https://www.openslr.org/117/)|||ASR-多语种|Golos|1240小时Russian|[https://www.openslr.org/114/](https://www.openslr.org/114/)|||ASR-多语种|MediaSpeech|10小时French,Arabic,Turkish and Spanish media speech|[https://www.openslr.org/108/](https://www.openslr.org/108/)|||噪声|Demand|各种各样的噪声|[https://zenodo.org/record/1227121#.Yi7QhhNBy3K](https://zenodo.org/record/1227121#.Yi7QhhNBy3K)|||噪声|Noisex-92|噪声|[https://github.com/yqlihust/noisex-92](https://github.com/yqlihust/noisex-92)|||噪声|MUSAN|music,speech,and noise|[https://www.openslr.org/17/](https://www.openslr.org/17/)||

TTS 数据整理

|类别|名称|描述|链接|详情||-|-|-|-|-||ASR-中文|mozilla common voice|提供各种语言的音频,目前14122小时87中语言|[https://commonvoice.mozilla.org/zh-CN/datasets](https://commonvoice.mozilla.org/zh-CN/datasets)|||ASR-中文|OpenSLR|提供各种语言的合成、识别等语料|[https://www.openslr.org/resources.php](https://www.openslr.org/resources.php)|||ASR-中文|open speech corpora|各类数据搜集|[https://github.com/coqui-ai/open-speech-corpora](https://github.com/coqui-ai/open-speech-corpora)|||ASR-中文|AiShell-4|211场会议,120小时,多通道中文会议语音数据库|[http://www.aishelltech.com/aishell_4](http://www.aishelltech.com/aishell_4)|||ASR-中文|AliMeeting|118.75小时会议数据|[https://www.openslr.org/119/](https://www.openslr.org/119/)|||ASR-中文|Free ST Chinese Mandarin Corpus|855发音人102600句手机录制|[https://www.openslr.org/38/](https://www.openslr.org/38/)|||ASR-中文|aidatatang_200zh|200小时600发音人文本准确98%|[https://www.openslr.org/62/](https://www.openslr.org/62/)|||ASR-中文|magicData|755小时中文1080spks,安静室内环境,16k||||ASR-中文|magicData-RAMC|180小时中文spontaneous conversation MAGICDATA Mandarin Chinese Conversational Speech Corpus|[https://www.magicdatatech.com/datasets/mdt2021s003-1647827542](https://www.magicdatatech.com/datasets/mdt2021s003-1647827542)|||ASR-中文|TAL_CSASR|中英混合587小时|[https://ai.100tal.com/dataset](https://ai.100tal.com/dataset)|||ASR-中文|TAL_ASR|100小时讲课|[https://ai.100tal.com/dataset](https://ai.100tal.com/dataset)|||ASR-英文|GigaSpeech|10000小时,强烈推荐|[https://github.com/SpeechColab/GigaSpeech](https://github.com/SpeechColab/GigaSpeech)||

Others are asking
适合客户端使用的 asr 模型有什么
以下是一些适合客户端使用的 ASR 模型: 1. Ollama: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. FishAudio 的 Fish Agent: 集成了自动语音识别(ASR)和文本到语音(TTS)技术,无需传统的语义编码器/解码器,即可实现语音到语音的直接转换。 模型经过 700,000 小时的多语言音频内容训练,支持包括英语、中文在内的多种语言,能够精准捕捉和生成环境音频信息。文本方面由 Qwen2.53B 处理。 相关链接: https://huggingface.co/fishaudio/fishagentv0.13b https://github.com/fishaudio/fishspeech 3. Gemini: Gemini Nano1 和 Gemini Pro 模型在各种 Benchmark 上的自动语音识别(ASR)任务中表现出色,如在 FLEURS、多语言 Librispeech 以及语音翻译任务 CoVoST 2 等测试集中。 相关链接:未提及。
2025-03-17
transformer 如何用于asr 识别问题
Transformer模型在自动语音识别(ASR)系统中发挥着重要作用。ASR系统的目标是将人类的语音转换成相应的文本表示。以下是Transformer模型在ASR系统中的一些关键应用: 1. 声学模型:在传统的ASR系统中,声学模型用于将声学信号(语音)映射到声学单元(如音素或字母)。Transformer模型,特别是基于注意力机制的架构,可以有效地捕捉时间序列数据中的长距离依赖关系,这对于理解语音信号非常重要。 2. 端到端识别:Transformer模型可以实现端到端的ASR,这意味着它可以直接将音频输入转换为文本输出,而不需要传统的声学模型和语言模型分离的架构。这种端到端的方法简化了训练过程,并且可以提高识别的准确性。 3. 注意力机制:Transformer模型的核心是自注意力机制,它允许模型在预测文本的每个字符时考虑不同时间步长的语音输入。这有助于模型更好地理解语音中的上下文信息。 4. 并行处理:与循环神经网络(RNN)相比,Transformer模型的注意力机制可以高效地并行处理,这对于加速训练和推理过程非常有利。 5. CTC(Connectionist Temporal Classification):在某些实现中,Transformer模型与CTC损失函数结合使用。CTC允许模型在没有明确时间对齐的情况下,从语音信号中直接输出文本序列。 6. 语言模型集成:Transformer模型可以与预训练的语言模型集成,以提高对语言结构和语法的理解,从而提高ASR系统的整体性能。 7. 多语言和方言识别:由于Transformer模型的灵活性和强大的表示能力,它可以被用来构建多语言或方言的ASR系统。 8. 鲁棒性:Transformer模型可以通过训练数据的多样化来提高ASR系统在不同口音、背景噪音和录音条件下的鲁棒性。 9. 实时识别:尽管Transformer模型通常比较复杂,但通过模型优化和压缩技术,它们可以被部署在实时ASR系统中。 10. 预训练和微调:可以利用大量的语音数据对Transformer模型进行预训练,然后在特定领域的数据上进行微调,以提高特定用例的性能。 在实际应用中,构建一个高效的ASR系统可能需要结合多种技术,包括传统的声学处理技术、深度学习模型以及优化算法。Transformer模型由于其在处理序列数据方面的优势,已成为当前ASR领域的研究热点之一。
2024-04-22
我是一个教育行业产品经理,我想要学习如何做一个产品经理智能体帮我做方案,告诉我我需要学习的知识
作为教育行业的产品经理,若要学习制作能为您做方案的产品经理智能体,您需要掌握以下知识: 智能体的应用: 自动驾驶:智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色和智能行为系统。 金融交易:金融市场中的智能交易算法根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人中集成的智能控制系统。 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 智能体产品功能详解: 智能体广场: 上传文档至知识库:点击【上传知识】按钮,可上传文档文件或 URL 导入,支持多种文档类型,文档大小有限制,可配置知识的切片方式,完成后知识将进入数据处理状态。 多智能体 AI 搜索引擎方案: 第一步,快速搜索补充参考信息:根据用户任务使用搜索工具补充更多信息,如使用工具 API WebSearchPro。 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索和自主分析并进行多轮搜索任务的能力。 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。
2025-03-17
我想建立一个知识库,自动生成解决方案
以下是关于建立知识库并自动生成解决方案的相关信息: smartBot 的应用场景: 1. 辅助使用者对某个行业/领域/问题进行深度解读和分析,并建立系统性的认知过程。 2. 根据预设流程,自动化形成对某个专业方向/领域/行业的系统化知识图谱。 基于知识图谱的问答系统: 1. 结合知识图谱中的丰富信息,能够提供精确且富有洞察力的答案,无论问题是关于具体事实还是复杂关系。 2. 以 Bilibili 知识区为核心,将分散的知识点整合成语义网络,涵盖广泛主题领域,揭示不同概念间潜在关系。 3. 对 Bilibili 知识区重点视频字幕进行数据清洗和分词处理,确保数据准确性和一致性。 4. 利用 NLP 技术解析和优化用户查询,自动补充或纠正模糊查询词,提高查询准确性和覆盖面。 5. 采用先进深度学习技术,对用户查询进行深入语义理解和上下文分析,提供更精准搜索结果。 知识库构建与业务完整性: 1. 从文档切片、向量化到数据入库,构建完整的知识库。 2. 结合检索模块和生成模块,提供从检索到生成的完整解决方案。 用 Coze 免费打造微信 AI 机器人的步骤: 1. 设计方面:确定功能范围。 2. 搭建步骤: 开始节点和结束节点由 coze 自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,引用开始节点的变量“Question”,添加创建好的知识库,并将知识库右侧节点与结束节点左侧连接。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,选择使用设定内容直接回答。 试运行测试:点击右上角“试运行”,输入问题后点击“运行”,查看工作流每一步的详细输入和输出。
2025-03-16
一个小白,如何通过咱们这个网站来学习和应用AI,赋能工作,请给出详细的方案,
对于一个小白,通过本网站学习和应用 AI 赋能工作,可以参考以下详细方案: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、在网站中引入 AI 助手 1. 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:接着通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:最后可以通过准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。 七、推荐布鲁姆分类法学习路径 应用:深入 分析:大量阅读,理解各知识之间的关系。
2025-03-16
大模型企业落地方案有哪些
大模型企业落地方案主要包括以下几个方面: 1. 提高内容可信: 做具备通用能力的大模型,通过商业交付应用、反馈和评测来解决内容可信问题。 不断优化数据以解决实际应用问题,如自我学习能力等。 走向垂直化,结合场景用一个模型和框架提高内容精准度。 2. 解决算力成本高、训练重复和资源紧缺的问题: 以 GPT3 模型为例,现有千卡集群训练一个月,单次训练周期一个月,总成本超过 1200 万美金,且全行业训练卡持续涨价。 目前仍无人能用商业化的国产芯片做大模型训练。 3. 降低大模型价格或使用垂直领域模型落地。 4. 以百度智能云为例: 在 IaaS 层,百舸 AI 异构计算平台解决算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,提升算力管理能力和模型训练效率,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大算力支撑。 在 Paas 层,千帆大模型平台解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面工具链,支持定制化模型开发,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用数据反馈到模型中形成良性循环,持续优化模型性能。 在 SaaS 层,提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,大模型在实际应用中存在一些问题,如知识的局限性、幻觉问题和数据安全性问题,而 RAG 是解决上述问题的一套有效方案,它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可以和微调结合使用,两者并不冲突。
2025-03-12
写一个技术方案,列一个基础大纲
由于您没有提供具体的技术方案主题和相关要求,以下为您提供一个通用的基础大纲模板,您可以根据实际情况进行补充和完善: 一、项目概述 1. 项目背景和目标 2. 项目范围和限制 二、技术需求分析 1. 功能需求 2. 性能需求 3. 安全需求 三、技术选型 1. 开发语言和框架 2. 数据库选择 3. 服务器和部署环境 四、系统架构设计 1. 整体架构 2. 模块划分和接口设计 五、数据管理 1. 数据来源和采集 2. 数据存储和处理 3. 数据备份和恢复 六、开发计划 1. 里程碑和时间节点 2. 任务分解和人员分配 七、测试计划 1. 测试类型和方法 2. 测试用例设计 八、运维和支持 1. 系统监控和维护 2. 故障处理和应急预案 九、预算和资源需求 1. 人力成本 2. 硬件和软件采购成本 十、风险评估和应对 1. 技术风险 2. 管理风险 3. 外部风险 希望这个大纲对您有所帮助,若您能提供更具体的信息,我可以为您生成更详细、更具针对性的技术方案大纲。
2025-03-11
我要做一个桌面宠物机器人,帮我设计软硬件和后台方案
以下是为您设计的桌面宠物机器人软硬件和后台方案: 硬件方面: 选择合适的主控芯片,如 esp32、stm32、AVR 等。 配置各类传感器,如触摸传感器、声音传感器、光线传感器等,以实现与用户的交互。 设计电机驱动模块,用于控制机器人的动作。 配备显示屏,用于显示表情和信息。 软件方面: 基于 FreeRTOS 开发系统,负责产品 MCU 各外设驱动撰写、架构维护。 开发与手机软件的通信、OTA 等通讯功能。 后台方面: 建立数据存储和处理系统,用于存储用户与机器人的交互数据,并进行分析和处理。 开发远程控制和更新功能,方便用户通过网络对机器人进行管理和升级。 人员配置: 嵌入式工程师: 职责: 1. 基于 FreeRTOS,负责产品 MCU 各外设驱动撰写、架构维护,配合手机软件工程师进行通信、OTA 等通讯功能开发、维护。 2. 负责硬件模块的调试。 3. 参与量产中产线测试程序、校准程序等代码开发。 要求: 1. 有主流嵌入式芯片(例如 esp32、stm32、AVR 等)开发经验。 2. 具有嵌入式软件架构经验。熟悉 FreeRTOS 等嵌入式系统。 3. 会使用示波器、烙铁、风枪等硬件调试工具,有基础的模拟电路知识。 4. 有一年以上嵌入式开发经验,其中有复杂嵌入式项目开发经验者优先。 5. 对嵌入式和硬件有浓厚兴趣,出于兴趣开发过硬件项目者优先。 产品经理: 职责: 1. 在深刻理解产品的基础上,定义和设计情感化桌面机器人的软硬件交互方式。 2. 规划项目周期,与工程师和设计师紧密配合,推进产品的功能迭代和上线。 3. 测试、优化产品的软硬件交互体验。 要求: 1. 情感细腻,热爱生活。 2. 本科及以上学历,人机交互、计算机、设计相关专业优先。 3. 对软/硬件产品的用户体验有深刻的洞察,追求极致体验,对糟糕的产品容忍度低。 4. 对设计学科与前沿科技有深刻的认知,可以与设计师和工程师无缝沟通。 5. 有项目实操经历,执行力强,擅长按计划推动项目落地。
2025-03-11