Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI时代下,自己学什么最有用?自己应该提高哪方面的能力

Answer

在 AI 时代,以下几个方面的学习和能力提升最为有用:

  1. 逻辑思维推理能力:学会运用逻辑思维去使用大模型,这对于处理和解决问题至关重要。
  2. 善用工具:使用工具的人往往表现更好,要适应 AI 工具带来的自动化转变,避免被时代淘汰。
  3. 抽象与整合:随着“大语言模型”的发展,需要在更高层次上学习,抽象出更多细节,实现“整合”而非专业化。
  4. 基础认知与高阶思维锻炼:利用大语言模型加速认知提升,培养计划、评估、决策、抽象和创造等高阶思维,锻炼结构化思维。
  5. 提问与思考:未来教育应侧重如何提出有价值的问题,培养批判性思维和好奇心,广泛而深入地思考,吸收各种知识和思维模式,利用自然语言表达和整理思维。
  6. 成为超级个体:集中精力制定“策略”,把具体执行细节交给自动化系统。
Content generated by AI large model, please carefully verify (powered by aily)

References

罗文: 沉浸式智能体插件法

比提示词更重要的是逻辑思维推理能力[heading2]自我介绍:罗文[content]80后:去年10月开始学习生成式AI行业:PR、电商。现状:目前AI在创业定制智能体(电商、法律)(实践)与AI思维沙龙分享(费曼)。产品经历:聚焦搞了一个GPTs 1、2、3月排名靠前。后面被封了秒写提示词后期部署到国内产品。个人特点:自然语言派。因为不会代码、不会英文。都有用逻辑思维去使用大模型。个人微信:备注通往AGI之路。[heading2]今天的目标[content]解决一个卡点:怎么使用工具的工具(插件)。收获:一个思维方式、提问题方式。解决使用生成式AI 40%的卡点(对于新手)超过全中国99.9%。听课的同学共创一个全中国最全插件说明大全。学习如何把信息传送到飞书自动化使用AI最大的挑战我不知道什么~我怎么才能知道(思考的思考)问:这不废话吗?问谁:问AI或者通往AGI之路(知识库全球最大中文AI知识库开源=免费)怎么问?今天一次性说清楚,如果你不能提出正确的问题,就无法找到答案。学会问,才学准。AI时代:只有自己才是自己最好的导师

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

我们已经进入知识经济的时代,不是在网上开课贩卖知识那种,而真正做到了廉价且快速的复制知识-让知识任务自动化。但要做到能够和AI一起协同进化,我们需要提升哪些能力呢?善用工具历史证明,使用工具的人往往比不使用工具的人表现得更好。人类的发展史就是一部工具演化史,从农业时代的水车运输,到第一次工业革命的纺织机,再到信息时代的电脑,工具越来越自动化。很快,不会用AI工具来自动化重复性的任务,就像不会用电脑来处理复杂的计算一样,如果不能适应这个转变,就面临被时代淘汰的命运。我们会因为这种自动化带来的效率提升,腾出时间来进行更高层次的思考。抽象与整合现在“大语言模型”已经压缩了人类历史上积累的大量知识,你可以快速的用这些工具把知识回放出来。随着思维方式的进步,直接学习所有知识细节已经不再必要,我们可以在需要使用的时候通过工具来加速学习;现在需要的能力是在更高的层次上的学习,抽象出更多的细节。事实上,AI在掌握某些技能或知识的同时,也能使人类更容易学习这项技能或知识。随着技术的进步,AI必定能做到- “学习人类如何学习”,并以适合不同个体的方式来呈现它所学到的知识,让人们更好地吸收。过去的一种观点是,随着世界知识量的快速增加,人们普遍认为将会越来越专业化。但现在AI让知识自动化的技术不断进步,让我们看到了另一种可能性正在清晰可见:实现“整合”而不是专业化,人们在更高的层次上工作,为AI提供方向并作出合适的选择。这是一种充分利用人类潜能的最佳方式:让我们集中精力制定“策略”,而把具体的执行细节交给更擅长的自动化系统来处理。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

但这也不意味着不用再培养基础认知了,我们可以利用大语言模型来加速认知的提升,用它们来指导学习,让生物大脑和机器智能一同进化,这样我们才有更多的时间来做高阶思维的锻炼,例如计划,评估,决策、抽象和创造,从而培养出达到更高理解水平所需的直觉。。要知道过去没有高阶认知我们没有任何代价,现在的代价是非创造级别的工作,对人类来说即将失去经济价值,因为AI的自动化会做得更好。提问与思考在许多事情都被自动化的情况下,什么是值得学习的呢?首先,学会提问,未来的教育应侧重于如何提出有价值的问题,而不仅仅是回答问题。好的思考才能带来好的问题,批判性思维和好奇心是思考的前提,也是人类文明能够向前的动力。其次,学会广泛而深入地思考——尽可能多地吸收各种知识和思维模式,重点培养结构化思维。调将复杂的问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决这些部分,从而达到解决整体问题的目的。我们在上一章就提到了,目前AI模型都在练习如何根据长期目标来分解和执行计划,从而提升自己的智能,人类不是更应该这样吗?不然如何去评估和验证AI的执行结果呢?利用自然语言来表达和整理思维,形成清晰的“人类级别”叙述;所以AI不会减少编程的需求,而是让人人都能编程,这是通过算法和逻辑来解决问题的一种思维模式,可以帮助我们更好地结构化思考。通过广泛而深入的思考,我们才能定义真正对我们有价值的东西。成为超级个体

Others are asking
有没有AI制作视频的教学
以下为您提供一些 AI 制作视频的教学: 1. 五步学会用 AI 制作动画视频播客: 适合有一定技术基础的朋友,轻松上手创作动画视频。 参考链接: 2. Hailuo AI 推出 I2V01Live 新功能: 让静态 2D 插画“活”起来,为 2D 插画加入流畅动画,赋予角色生命力。 多风格支持,适配漫画、卡通等多种艺术风格,创作更自由。 细腻自然,捕捉细微动作细节,表情、眨眼等表现更加真实流畅。 参考链接: 3. 腾讯 Hunyuan:130 亿参数开源视频模型: 高质量视频生成,动作连贯自然,镜头切换灵活。 具备强大语义跟随能力,适配新一代语言模型作为文本编码器。 采用类似 Sora 的 DiT 架构,显著提升影视级动态表现力。 参考链接: 4. AI 特效挑战 001 杯子里的鲸鱼: 选用的视频制作工具可自行选择,这里以可灵 AI 为例为您演示。 打开可灵 AI ,[https://klingai.kuaishou.com/ ,点击图生视频,上传第一张图片。 输入提示词时一定需要加固定镜头,这很重要,否则画面推进或者拉远了后面制作会存在问题。 参考视频:
2025-04-15
知识库收录了多少种ai知识
目前的知识库涵盖了人工智能的多方面知识,包括但不限于以下内容: 1. 人工智能简史、AI 会话简史等基础知识。 2. 10 篇精选文章助于理解 AI。 3. 重要人物介绍和名词解释。 4. 推荐了相关书籍、电影。 5. 介绍了大模型的发展历程,包括其组成、三大基石(数据、算法、算力)以及早期的数据合规问题。 6. 包含 AI 音乐创作、数字人语音合成、config UI 的应用等技术应用方面的内容。 7. 社区共创项目,如东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 但关于知识库具体收录的知识种类数量,并未有明确的直接说明。
2025-04-15
如何利用ai搭建论文框架
利用 AI 搭建论文框架可以参考以下步骤和工具: 步骤: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:运用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析(若涉及):使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:通过 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并进行最后的格式调整。 常用工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 此外,还有一些关于 AI 技术原理和框架的相关知识: 1. 思维链:谷歌在 2022 年的一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可以在问题后面加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,比如对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 4. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。
2025-04-15
如何用AI,基于直播音频,生成内容思维导图?
以下是基于直播音频生成内容思维导图的一些方法和相关资源: 1. 利用 GPT 进行多种应用,如内容生成(文章、故事、诗歌、歌词等)、聊天机器人、问答系统、文本摘要、机器翻译、群聊总结、代码生成、教育、浏览器插件、PDF 对话等。相关演示和资源包括:https://chat.openai.com/、https://bard.google.com/extensions、https://claude.ai/、 等。 2. 可以使用专门的工具和平台,如 https://bibigpt.co/r/AJ 进行音视频提取总结,https://podwise.xyz/dashboard/trending 进行播客总结,https://xmind.ai/editor/ 生成脑图。 3. 火山引擎上线的“大模型应用实验室”平台提供的企业级模板,可实现输入故事主题后全自动生成故事、分镜、人物图片、视频、音频,并自动剪辑。 4. 通义听悟可用于处理语音与视频,如将直播回放的 mp4 文件上传,快速定位内容,生成总结和笔记,也适用于其他线上或线下分享。
2025-04-15
最近的ai趋势
以下是最近的 AI 趋势: 1. 技术创新方面: 大模型创新:架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化:推理能力成为关键,推动计算和数据变革。 AGI 探索:视频生成引发关注,空间智能统一虚拟和现实。 2. 应用格局方面: 第一轮洗牌结束,聚焦 20 赛道 5 大场景。 多领域竞速,运营重要性大于技术,AI 助手竞争激烈。 AI+X 赋能类产品发展迅速,原生 AI 爆款难求。 多模态上马,Agent 席卷一切,高度个性化需求凸显。 变革生产力,重塑行业生态。 行业渗透率受数据基础和用户需求影响。 3. 产品设计和商业化方面: 从通用能力向专业化细分发展,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等领域不断提升核心能力。 商业模式不断创新,如 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)。 4. 行业大事记方面: 模型领域,DeepSeek 开源 R1 模型将大模型行业推进到推理时代,引发全球影响。 图像模型整体往更快、更便宜方向发展,AI 图像生成成为常用生产力工具。 视频模型底层架构无大变化,在细节优化上,如视频音效生成逐渐成为标配。
2025-04-15
AI如何促进企业增长,该从哪些层面入手
以下是关于 AI 促进企业增长及入手层面的相关内容: 1. 从宏观环境来看: 2024 年,AI 已在多个领域取得显著进展,其在推进人类知识方面的作用得到认可,如在物理学、化学的诺贝尔奖及图灵奖中有所体现。同时,企业对 AI 的投资在经历短暂放缓后反弹,新成立的生成式 AI 初创公司数量大幅增加,AI 已从边缘位置成为企业价值的核心驱动因素。 各国政府也在加大对 AI 的投入,出台相关政策和举措,推动 AI 发展。 2. 从监管层面来看: 适当的监管能激励企业在解决重要问题的同时控制风险,从而增加创新。例如,产品安全立法促进了更安全产品和服务的创新。 应采取基于情境、适度的监管方法,平衡风险与机会、效益,增强公众信任,促进 AI 应用。 3. 从企业自身来看: 启动试点项目以获取动能,选择易成功而非最具价值的项目,在 6 12 个月内展示成效,项目可内部或外包进行。 建立公司内部的 AI 团队,搭建集中统一的团队并选派人员协助各业务部门,方便统一管理。 构建全公司范围的平台,如软件平台、工具或数据基础设施,单个部门可能缺乏权限和资源完成此类平台建设。 提供广泛的 AI 培训,包括高层了解 AI 策略和资源分配,部门领导掌握项目方向设置、资源分配与进度监控,培养内部工程师开展相关工作。 制定 AI 策略,结合自身业务深度了解后制定,设置与 AI 良性循环一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,包括战略数据采集、构建统一数据仓库等。
2025-04-15
我想写一篇本科生论文,给出我需要的所有用于ai写论文用的指令
以下是利用 AI 写本科生论文的一些指令和步骤: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析(若涉及):如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-03-20
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
目前是否有用于治病或者诊断的AI
目前有用于治病或者诊断的 AI 应用。 在医疗保健领域,AI 发挥着重要作用: 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 例如,有 AI 公司训练神经网络预测蛋白质结构,其成果已用于预防抗生素耐药、推进疾病研究和对抗塑料污染。还有英国的医疗技术公司与 NHS 合作测试用于二次筛查的 AI,能让更多患者更快地接受筛查,让临床医生有更多时间为患者服务并提供更快的治疗。此外,AI 在自动化医疗分诊系统中,能根据医疗数据集、患者记录和实时健康数据预测患者病情,并为医疗专业人员或直接为患者生成有关可能症状原因及潜在干预和治疗的建议。
2025-02-10
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
对自媒体创作有用的AI软件或工具
以下是一些对自媒体创作有用的 AI 软件或工具: 1. AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity。 2. 图片处理:DallE、Leonardo、BlueWillow、Midjourney。 3. 版权写作:Rytr、Copy AI、Wordtune、Writesonic。 4. 设计:Canva、Clipdrop、Designify、Microsoft Designer。 5. 网站搭建:10Web、Framer、Hostinger、Landingsite。 6. 视频处理:Klap、Opus、Invideo、Heygen。 7. 音频处理:Murf、LovoAI、Resemble、Eleven Labs。 8. SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope。 9. Logo 设计:Looka、LogoAI、Brandmark、Logomaster。 10. 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple。 11. 自动化工具:Make、Zapier、Bardeen、Postman。 此外,中文的内容仿写 AI 工具推荐: 1. 秘塔写作猫:https://xiezuocat.com/ 写作猫是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章的各类属性,为文章的正负情感、情绪强度和易读性打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是得力的智能写作助手,能处理心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 智能创作助手 Effidit 由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别。)
2025-01-13
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
AI对社会经济的影响,AI时代有哪些新的竞争机会
AI 对社会经济的影响主要体现在以下几个方面: 1. 引领新的服务模式:如“智能即服务”,重塑工作和生活,增强能力、实现自动化和改变交互方式。 2. 赋能相关行业:为芯片和云计算行业带来新机遇,推动其发展,GPU 需求预计持续增长。 3. 创造投资机会:企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件,有望成为重要爆发点。 4. 影响企业竞争策略:企业竞争策略分化,有的迅速成长为大型模型公司并寻找强大背书,有的保持小规模专注盈利并灵活应对市场变化。 5. 推动科技巨头合作:科技巨头通过资本控制 AI 模型公司,为其提供算力,加速行业发展。 在 AI 时代,新的竞争机会包括: 1. 成为大型模型公司并获得强大背书,以取得竞争优势。 2. 保持小规模,专注盈利和灵活应对市场变化。 3. 在特定领域如企业软件、金融服务、健康技术等,利用 AI 创新获得发展机会。 4. 适应权力格局变更,应对“AI 寡头”或“超级强国”的出现,寻找新的发展空间。 同时,AI 时代还具有以下特点和趋势: 1. 未来变化深远,人们会找到新的做事、服务彼此和竞争的方式。 2. 主动性、意志力和毅力将极其宝贵,韧性和适应能力值得培养。 3. AGI 将成为人类意志最大的杠杆,个人能产生更大影响。 4. AGI 的影响不均衡,科学进步速度可能更快,部分商品价格大幅下降,奢侈品和有限资源价格可能上涨。 5. AI 将渗透到经济和社会各领域,人们期待所有事物具有“智能”特质。 6. 权力金字塔可能重塑,率先开发或控制 AGI 的主体将获得巨大战略优势,可能出现“AI 寡头”或“超级强国”,威胁民主和公平竞争。
2025-04-01
在AI时代,我们还需要学英语吗?
很抱歉,知识库中的内容没有直接针对“在 AI 时代,我们还需要学英语吗?”这个问题的相关回答。但从 AI 发展的趋势来看,英语在很多方面仍然具有重要性。例如,许多先进的 AI 技术和研究成果往往首先以英文形式呈现,相关的学习资源和交流也多以英语为主。同时,一些 AI 工具,如 Grok 语音模式,虽然目前仅支持英文,但也说明了英语在利用此类工具进行学习和提升方面的作用。总之,在 AI 时代,学习英语仍有其必要性和价值。
2025-03-31
AI时代如何做好教学设计
在 AI 时代做好教学设计可以从以下几个方面入手: 1. 选题探索:当学生关注教学工具的选择时,如“听书软件对学生学习的好处有哪些”,可从提升阅读理解能力、拓展知识面、增强语言表达能力、促进想象力发展、培养学习兴趣等多个维度进行分析。 2. 工具分析:对于工具对比的问题,如“音频软件/听书软件可以从哪几个方面进行对比”,提供系统的比较维度,包括用户界面、功能特性、文件格式支持、价格策略、书库资源、阅读体验等,引导学生构建评估框架,进行系统思考。 3. 教学设计:针对具体课程,如“为八年级上册课文《中国石拱桥》进行学情分析”,从教学目标、教学内容、教学方法、教学流程、注意事项等方面进行全面分析,体现教育专业知识,提供教学设计指导。 4. 课堂情境:当学生思考课堂管理问题,如“描写一段学生打闹的场景”,生动描写课堂情境,并给出教师的适当管理策略,提供情境化的案例和解决方案。 此外,还包括以下方面: 1. 教材内容分析:包括基本教学内容和学习重难点。 2. 教学目标描述:涵盖知识与技能、过程与方法、态度与价值观。 3. 学习者特征分析:了解聪明学生的认知水平、学习特点、学习习惯、学习任务特点等。 4. 教学策略选择与设计:教学方法有讲解、演示、个别指导、练习、自主学习、小组讨论、全班交流、合作学习等;情境创设包括真实情境、问题性情境、虚拟情境等。资源应用方面,根据实际情境选择或组合,同时注意安排、资源、模版、量规,但可能缺少现场指导与顾问。 在具体的教学环节中: 1. 教学方法:对于“卖炭翁的教学模式与策略”,提供兴趣导向、实践引导、以小见大、激励自主等多种策略。 2. 教案编写:回答“教学设计的总流程”,提供引入、阅读理解、重点内容讲解、交流互动、拓展延伸、总结归纳等完整流程。 3. 教学创新:针对“怎么对一元二次方程组进行教材分析和学情分析”,从教材内容、学生认知特点、教学难点等方面进行分析。 4. 资源推荐:对于“评分高的教育电影”,推荐优质影片并简述其教育价值。 5. 班级管理:对于“有助于处理小学学生矛盾的教育类书籍”,推荐并分析相关书籍的实用价值。
2025-03-31
大模型时代组织和个人面临的挑战和应对策略是什么?
在大模型时代,组织和个人面临着以下挑战和应对策略: 挑战: 1. 算力投资风险:大规模算力投资使公司转变为重资产模式,可能影响公司估值和投资人收益。获取高性能算力成本高昂,包括 GPU 价格及后续部署、运营、调试和使用成本。 2. 估值泡沫风险:创业公司为抬高估值规避算力风险,可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成为关键指标。 应对策略: 1. 对于创业公司: 挖掘新的价值点,如探索大模型在不同领域的应用,或开发中间层服务,如训练、数据处理、算力服务等。 避免盲目追逐原创大模型,根据自身情况选择合适的发展路径,如套壳开源大模型或拼装大模型时注重创新和突破。 2. 对于投资人: 保持独立判断,不人云亦云,吸取以往经验教训,专注于更有创意和机会的公司或项目。
2025-03-28
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
runway属于什么ai能力类型
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。 在 AI 能力类型方面: 年初爆火,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 内测能力可根据参考图像进行 Video to Video 视频风格化。 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。 11 月 25 日发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持。 目前 Runway 支持在网页、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步。官方网站:https://runwayml.com/
2025-04-15
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
你都有什么能力呢?
我作为 AI 知识专家,具备以下能力: 1. 作为提示词专家,能将常规的提示词转化为结构化的提示词,并输出符合预期的回复。了解 LLM 的技术原理和局限性,具有丰富的自然语言处理经验,具备迭代优化能力。 2. 能为您介绍小白参与活动的流程和组队所需的人员类型,如脚本编写、出图、出视频、配音乐、剪辑、统筹等。 3. 为您讲解扣子提供的基础功能,包括提示词(设定 Bot 身份及回复逻辑)、插件(通过 API 连接集成平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库),并为您提供相关参考链接。
2025-04-14
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12