直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能

回答

以下是关于人工智能的全面介绍:

AGI 的 5 个等级

  1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
  2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。
  3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品执行任务后仍需人类参与。
  4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。
  5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

人工智能简介和历史: 人工智能是研究如何使计算机表现出智能行为,例如做人类擅长的事情。最初由查尔斯·巴贝奇发明计算机,用于按明确程序运算。现代计算机虽更先进,但仍遵循相同受控计算理念。但有些任务如根据照片判断人的年龄,无法明确编程,因为不知大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。

人工智能的应用场景

  1. 医疗保健:
    • 医学影像分析:辅助诊断疾病。
    • 药物研发:加速研发过程。
    • 个性化医疗:提供个性化治疗方案。
    • 机器人辅助手术:提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈:降低金融机构风险。
    • 信用评估:帮助做出贷款决策。
    • 投资分析:辅助投资决策。
    • 客户服务:提供 24/7 服务并回答常见问题。
  3. 零售和电子商务:
    • 产品推荐:根据客户数据推荐产品。
    • 搜索和个性化:改善搜索结果和提供个性化体验。
    • 动态定价:根据市场需求调整价格。
    • 聊天机器人:回答客户问题。
  4. 制造业:
    • 预测性维护:预测机器故障。
    • 质量控制:检测产品缺陷。
    • 供应链管理:优化供应链。
    • 机器人自动化:提高生产效率。
  5. 交通运输:(未具体说明应用场景)
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

人工智能简介和历史

译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

其他人在问
人工智能技术在材料设计的应用
以下是人工智能技术在材料设计方面的应用: 1. 存在一些可辅助或自动生成 CAD 图的 AI 工具和插件,如 CADtools 12(Adobe Illustrator 插件)、Autodesk Fusion 360(集成 AI 功能的云端 3D CAD/CAM 软件)、nTopology(基于 AI 的设计软件)、ParaMatters CogniCAD(基于 AI 的 CAD 软件),一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等也提供了基于 AI 的生成设计工具。这些工具通常需要一定的 CAD 知识和技能才能有效使用,对于初学者建议先学习基本的 3D 建模技巧。 2. DeepMind 利用其深度学习工具 GNoME 发现了超过 220 万种新的晶体材料,其中约 38 万种被认为是稳定的。这展示了 AI 在新材料方面前所未有的预测规模和准确性,推动了材料发现革命,并且公开了发现的新材料数据供其他科学家研究和实验。 3. 在新工业革命中,AI 正在工业化生物制药和医疗保健,被应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。
2024-11-25
人工智能与教育相关的
以下是关于人工智能与教育相关的内容: 可以使用人工智能帮助教育,包括辅助自学、让教师生活更轻松及课程更有效。例如,可以要求人工智能解释概念,获取良好结果。同时要注意因人工智能可能产生幻觉,关键数据需依据其他来源仔细检查。相关提示如“一个很好的自动导师”,可通过“https://chat.openai.com/share/ec1018ec1d864160b587354253c7d5cb”找到直接链接激活 ChatGPT 中的导师。 有一些 AI+教育的案例和投稿,如“书籍推荐:三本神经科学书籍”“AI 赋能教师全场景”“未来教育的裂缝:如果教育跟不上 AI”“化学:使用大型语言模型进行自主化学研究”。 推荐阅读可汗学院创始人的新书《Brave New Words:How AI Will Revolutionize Education》(中文翻译为《勇敢的新词:人工智能如何彻底改变教育》),书中提到人工智能在教育领域的未来将与科技合作,让教育变得更好,并非为了抢走老师的风头,而是帮助老师抢风头。
2024-11-25
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20