直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能诈骗成功多个案例

回答

以下是为您整合的相关内容:

  • 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
  • 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。
  • 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

拜登签署的AI行政命令_2023.10.30

Require that developers of the most powerful AI systems share their safety test results and other critical information with the U.S.government.In accordance with the Defense Production Act,the Order will require that companies developing any foundation model that poses a serious risk to national security,national economic security,or national public health and safety must notify the federal government when training the model,and must share the results of all red-team safety tests.These measures will ensure AI systems are safe,secure,and trustworthy before companies make them public.Develop standards,tools,and tests to help ensure that AI systems are safe,secure,and trustworthy.The National Institute of Standards and Technology will set the rigorous standards for extensive red-team testing to ensure safety before public release.The Department of Homeland Security will apply those standards to critical infrastructure sectors and establish the AI Safety and Security Board.The Departments of Energy and Homeland Security will also address AI systems’ threats to critical infrastructure,as well as chemical,biological,radiological,nuclear,and cybersecurity risks.Together,these are the most significant actions ever taken by any government to advance the field of AI safety.Protect against the risks of using AI to engineer dangerous biological materials by developing strong new standards for biological synthesis screening.Agencies that fund life-science projects will establish these standards as a condition of federal funding,creating powerful incentives to ensure appropriate screening and manage risks potentially made worse by AI.Protect Americans from AI-enabled fraud and deception by establishing standards and best practices for detecting AI-generated content and authenticating official content.The Department of Commerce will develop guidance for content authentication and watermarking to clearly label AI-generated content.Federal agencies will use these tools to make it easy for Americans to know that the communications they receive from their government are authentic—and set an example for the private sector and governments around the world.

【法律法规】《促进创新的人工智能监管方法》.pdf

transformative developments yet tocome.27LLMs provide substantial opportunities to transformthe economy and society.For example,LLMs can automate the process of writing code andTransport apps like Google Maps,and CityMapper,use AI.Artificial Intelligence in Banking Industry:A Review on Fraud Detection,Credit Management,and Document Processing,ResearchBerg Review of Science and Technology,2018.Accelerating fusion science through learned plasma control,Deepmind,2022; Magnetic control of tokamak plasmasthrough deep reinforcement learning,Degrave et al.,2022.Why Artificial Intelligence Could Speed Drug Discovery,Morgan Stanley,2022.AI Is Essential for Solving the Climate Crisis,BCG,2022.General Purpose Technologies – Handbook of Economic Growth,National Bureau of Economic Research,2005.The UK Science and Technology Framework,Department for Science,Innovation and Technology,2023.In 2022 annual revenues generated by UK AI companies totalled an estimated £10.6 billion.AI Sector Study 2022,DSIT,2023.DSIT analysis estimates over 50,000 full time workers are employed in AI roles in AI companies.AI Sector Study 2022,DSIT,2023.For example,AI can potentially improve health and safety in mining while also improving efficiency.See AI on-side:howartificial intelligence is being used to improve health and safety in mining,Axora,2023.Box 1.1 gives further examples of AIdriving efficiency improvements.Large Language Models Will Define Artificial Intelligence,Forbes,2023; Scaling Language Models:Methods,Analysis &Insights from Training Gopher,Borgeaud et al.,2022.A pro-innovation approach to AI regulationfixing programming bugs.The technology can support genetic medicine by identifying linksbetween genetic sequences and medical conditions.It can support people to review and

【法律法规】《促进创新的人工智能监管方法》.pdf

Risks to societal wellbeingDisinformation generated and propagated by AI could undermine access to reliableinformation and trust in democratic institutions and processes.The Malicious Use of Artificial Intelligence,Malicious AI Report,2018.Constitutional Challenges in the Algorithmic Society,Micklitz et al.,2022.Smart Speakers and Voice Assistants,CDEI,2019; Deepfakes and Audiovisual disinformation,CDEI,2019.Artificial Intelligence,Human Rights,Democracy and the Rule of Law,Leslie et al.,2021.Government has already committed to addressing some of these issues more broadly.See,for example,the InclusiveBritain report,Race Disparity Unit,2022.A pro-innovation approach to AI regulationRisks to securityAI tools can be used to automate,accelerate and magnify the impact of highlytargeted cyber attacks,increasing the severity of the threat from malicious actors.The emergence of LLMs enableshackers48with little technical knowledge or skill togenerate phishing campaigns with malware delivery

其他人在问
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将制定内容认证和水印的指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
教培舞蹈机构如何利用人工智能ai获客引流?
对于教培舞蹈机构利用人工智能 AI 获客引流,以下是一些建议: 1. 利用 AI 驱动的客户关系管理(CRM)系统:通过分析潜在客户的行为数据和偏好,实现精准营销和个性化的服务推荐。 2. 借助 AI 聊天机器人:在网站或社交媒体平台上提供即时的咨询服务,解答潜在客户关于课程、师资、价格等常见问题,提高客户满意度和参与度。 3. 运用 AI 进行市场分析:了解市场趋势、竞争对手动态以及潜在客户的需求,从而优化课程设置和营销策略。 4. 利用 AI 生成个性化的营销内容:例如宣传文案、海报设计等,吸引潜在客户的注意力。 5. 基于 AI 的社交媒体管理工具:帮助机构更有效地发布内容、选择发布时间,并监测社交媒体上的用户反馈,及时调整营销策略。
2024-11-20
ai诈骗发展历程
AI 诈骗是随着 AI 技术的发展而出现的一种新型诈骗手段,其发展历程与 AI 技术的整体发展密切相关。 AI 技术的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 随着 AI 技术的进步,AI 幻觉等问题也逐渐显现。AI 幻觉并非新问题,从早期的“人工智障”到如今“一本正经地胡说八道”,其复杂性和隐蔽性不断提升。这一演变反映了 AI 技术从依赖人工规则到依靠数据驱动,再到深度学习的发展过程,在变得更“聪明”的同时也面临更多挑战。 在神经网络方面,如 CNN 的结构基于大脑细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色,随着对大脑工作机制认知的加深,神经网络算法和模型不断进步。 目前,AI 技术的发展为诈骗手段的更新提供了可能,例如利用深度伪造技术制造虚假的语音、视频进行诈骗等。
2024-11-21
ai诈骗法律法规
目前关于 AI 诈骗的法律法规方面,有以下相关信息: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 在英国,产品安全法律确保在英国制造和投放市场的商品是安全的。特定产品的立法(如电气和电子设备、医疗设备和玩具)可能适用于某些包含集成 AI 的产品。消费者权利法可能在消费者签订基于 AI 的产品和服务销售合同时保护消费者。侵权法提供了一个补充制度,在民事过错造成损害时可能提供赔偿。但目前尚不清楚消费者权利法在包含集成 AI 的产品或基于服务的背景下是否能提供适当水平的保护。
2024-11-21
ai诈骗防范措施和技术手段
以下是关于 AI 诈骗防范的一些措施和技术手段: 1. 政府层面: 拜登签署的 AI 行政命令要求,开发最强大 AI 系统的开发者需向美国政府分享安全测试结果和其他关键信息。对于可能对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。 商务部将制定内容认证和水印的指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具,为公众识别官方内容提供便利,并为私营部门和全球各国政府树立榜样。 2. 技术层面: 国家技术标准研究所将制定严格的标准进行广泛的红队测试,以确保在公开发布前的安全性。 国土安全部将把这些标准应用于关键基础设施部门,并建立 AI 安全和安保委员会。能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。 3. 企业层面: 360 立志解决大模型的安全问题,将大模型的安全问题分为三类进行研究。 在个人层面,要提高对 AI 诈骗的警惕性,不轻易相信来源不明的信息,学会识别可能的 AI 生成的虚假内容。
2024-11-21
ai诈骗成功案件
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。相关部门将制定标准、工具和测试以确保 AI 系统安全可靠,还将通过制定新标准来防范利用 AI 制造危险生物材料的风险,以及通过建立标准和最佳实践来保护美国人免受 AI 导致的欺诈和欺骗,如商务部将为内容认证和水印制定指导,以明确标记 AI 生成的内容。 关于 AI 相关的监管协调,将支持企业对 AI 创新进行有信心的投资并减少不确定性。行业要求进一步的系统协调以明确谁负责解决跨领域的 AI 风险并避免多个监管机构的重复要求。例如“AI 公平保险有限公司”设计新的 AI 驱动算法来设定保险费价格,其使用 AI 设定价格可能受到包括数据保护、平等和一般消费者保护法等一系列法律框架以及部门规则的约束。
2024-11-21
ai诈骗案例
以下为您提供一些与 AI 相关的内容: 在法律领域,AI 可用于模拟不同辩护策略下的量刑结果,例如针对商业贿赂、网络诈骗等刑事案件,还能为商业合同纠纷等案件设计诉讼策略。 拜登签署的 AI 行政命令要求强大 AI 系统的开发者向美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,保护免受利用 AI 制造危险生物材料的风险,以及建立标准和最佳实践以防范 AI 导致的欺诈和欺骗。 在探讨 AI 幻觉方面,介绍了幻觉与错误的区别,包括性质、表现形式和原因等,并通过具体案例如翻译和推理问题进行说明。
2024-11-21
ai诈骗特征
AI 诈骗可能具有以下特征: 1. 利用类似 GPT4o 这样的先进模型,以面相分析、相亲建议等看似新奇有趣的服务吸引用户,抓住人们的好奇心和浮躁心理,获取用户信任。 2. 声称能够在多个领域如穿搭、生活工作、化妆、婚姻等根据用户照片给出准确建议,包括职业、健康、财运、婚姻等综合运势。 3. 生成看似合理但可能完全错误且令人信服的内容,如虚假的事实、预测和解释。 4. 不道德地操纵或欺骗用户,尤其是对不懂 AI 的老人,可能导致其财产损失。 需要注意的是,对于 AI 生成的内容,应保持警惕,不可过度相信,要仔细检查和核实。
2024-11-21
ai诈骗直接案例
以下为您提供一些与 AI 诈骗相关的案例: GPTCHA:这是一款由三位开发者共同搭建的由 GPT4 驱动的小工具,致力于解决电话诈骗问题。它能够拦截可疑电话,并用虚拟声音与呼叫方聊天,直到确认电话合法且安全。您可通过 http://gptcha.ai/ 了解更多。 此外,在周鸿祎免费课 AI 系列第一讲中提到,AIGC 可能被用于深度伪造,不仅涉及个人诈骗,还可能影响国家安全。比如利用 Stable Diffusion、Midjourney 等工具生成虚假图像进行诈骗。
2024-11-20
ai案例
以下是一些 AI 的应用案例: 在汽车行业: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置。 预测性维护:通过分析车辆实时数据预测潜在故障和维护需求。 生产自动化:在汽车制造中用于自动化生产线,提高效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等语音助手。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。 在活动策划中: 活动主题及内容生成:根据活动目标、参与者背景等生成合适的主题和内容框架建议。 邀请函和宣传文案生成:基于活动信息生成吸引人的文案。 现场活动管理:利用计算机视觉、语音识别等辅助管理人流、秩序等。 虚拟助手:作为虚拟活动助手提供信息查询和问题咨询服务。 活动反馈分析:自动分析活动反馈,总结关键观点和改进建议。 活动营销优化:基于参与者行为数据优化营销策略。 在工作场景中: 企业运营:日常办公文档材料撰写整理,营销对话机器人,市场分析,销售策略咨询,法律文书起草、案例分析、法律条文梳理,人力资源简历筛选,预招聘,员工培训。 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 游戏/媒体:定制化游戏,动态生成 NPC 互动,自定义剧情,开放式结局,出海文案内容生成,语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2024-11-20
利用Ai诈骗的多个具体案例
以下是一些与利用 AI 诈骗相关的案例: 在网络诈骗案件中,犯罪分子可能利用 AI 模拟不同辩护策略下的量刑结果,包括认罪协商和无罪辩护的可能性,以此误导受害者。 有虚构的公司利用 AI 驱动的算法设置保险费价格,可能存在违反相关法律法规和最佳实践的风险,如数据保护、平等和一般消费者保护法等。 拜登签署的 AI 行政命令中提到要保护美国人免受利用 AI 进行的欺诈和欺骗,例如建立检测 AI 生成内容和验证官方内容的标准和最佳实践,商务部将为内容认证和水印制定指导方针,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-11-20
利用Ai诈骗的具体案例
以下是一起利用 AI 诈骗的具体案例: 2019 年 3 月,某国际能源公司首席执行官接到一个未知来电,电话那头是其德国母公司的 CEO(通过“AI 换脸”技术伪装)。对方称公司出现运营危机,要求其向一个匈牙利银行账户紧急提供 220000 欧元或 243000 美元资金支援,并表示资金将在周转后报销。尽管指令不合规且涉及大额资金流转,但因声音与老板无异,被害人最终转账。资金从匈牙利流向墨西哥后分散,截至 2023 年 5 月仍未追回。
2024-11-20
Ai诈骗的案例分析
以下为一些 AI 诈骗的案例分析: 2019 年 3 月,某国际能源公司首席执行官接到未知来电,对方冒充其德国母公司的 CEO(声音与口音、语气习惯都极为相似),以公司出现运营危机为由,要求提供 220000 欧元或 243000 美元的资金支援,并提供了匈牙利银行账户。尽管指示不合规且涉及大额资金流转,被害人最终还是选择执行命令并完成转账。资金从匈牙利流向墨西哥后再被分散,截至 2023 年 5 月仍未追回。
2024-11-20
我需要根据我提供的原素材和要求写作,原素材有可能是多个大型文件,推荐哪个或哪些AI工具?
以下是根据您的需求为您推荐的不同类型的 AI 工具: 对于需要修改医学课题的情况,您可以考虑: Scite.ai:是为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:能从文档提取结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,可提供医学课题修改意见。 对于内容仿写,推荐以下中文工具: 秘塔写作猫:是 AI 写作伴侣,支持全文改写等功能。 笔灵 AI 写作:是智能写作助手,支持多种写作需求。 腾讯 Effidit 写作:由腾讯 AI Lab 开发的创作助手。 对于文字生成视频,以下产品可供选择: Pika:擅长动画制作,支持视频编辑。 SVD:可在 Stable Diffusion 图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能转换视频风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关工具和信息您可以通过以下链接查看: 更多医学课题修改工具相关:无 更多内容仿写工具相关:https://www.waytoagi.com/sites/category/2 更多文字生成视频工具相关: 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-15
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
请问有没有AI工具可以实现把一个物体生成多个角度
目前有一些 AI 工具可以实现把一个物体生成多个角度。例如,在图像生成方面,像 OpenAI 等机构的相关模型能够生成同一场景的多个角度,包括具有物理上准确的光线,甚至在某些情况下还能生成物理上准确的流体和雨水。 在生成 AI 人物形象时,也可以通过选择不同的拍摄角度来实现。常用的角度包括高角度、低角度和平视角度。 高角度:位于被拍摄对象的上方,适合拍摄俯视角度的场景,可以突出被拍摄对象的大小和高度。 低角度:位于被拍摄对象的下方,适合拍摄仰视角度的场景,可以突出被拍摄对象的高度和威严感。 平视角度:与被拍摄对象在同一高度,适合拍摄平面场景,可以突出被拍摄对象的水平线和平衡感。 此外,人物构图的视角还可以按照相机相对于被拍摄对象的位置,分为正面、背面和侧面等不同方向。 正视角:拍摄对象正对着相机的姿态,使人像呈现出正面的视角。 后视角:从被摄对象的背后拍摄的视角,能营造出神秘或者引人遐想的氛围。
2024-11-05
一次向多个大模型发送消息
以下是关于您提到的向多个大模型发送消息的相关信息: 在认识大模型 Embedding 技术加实战方面: Embedding 在大模型中的价值体现在增强 GPT 的能力,其过程包括搜索内部知识库、检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并提问。 具体操作步骤包括准备搜索数据(仅一次),如搜集数据、切块、嵌入、存储;以及搜索(每次查询一次)和提问(每次查询一次)。 Embedding 共有搜索(结果按相关性排名)、聚类(文本字符串按相似性分组)、建议(包含相关文本字符串的项目)、异常检测(识别离群值)、多样性测量(分析相似性分布)、分类(按标签分类)等作用。 在熊猫大侠基于 COW 框架的 ChatBot 实现步骤方面: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 有更适合小白的使用教程,可实现打造自己的 ChatBot(包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)和常用开源插件的安装应用。 正式开始前需知道,此实现思路需接入大模型 API(单独付费),且微信端使用有封号危险,不建议主力微信号接入。 要依法合规使用,注意甄别大模型生成的内容,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5、GPT4.0、Claude、文心一言、讯飞星火、通义千问、Gemini、GLM4、LinkAI 等;多消息类型,如文本、语音、图片,以及基于自有知识库的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 方式。
2024-10-12
使用人物Lora生成的图片中有多个人物时,怎么让人物的形象各不相同?
在 Stable Diffusion 中,若使用人物 Lora 生成的图片中有多个人物并想让人物形象各不相同,可参考以下方法: 1. 在提示词中输入数量词(如 2girls 或 3boys 等),再加上各自的描述提示词。若刷图成功率不高,可配合 openpose 控制,做一个多人骨架,以生成多人物构图。 2. 需使用不同的 Lora 来区分人物,但单纯靠提示词可能行不通。 3. 分区控制思路: Multidiffusion 的做法:启用 Tiled Diifusion,打开分区提示词控制,创建文生图画布。启用不同区域,分别填写背景、不同人物的描述词和 Lora。增加 controlnet 的 openpose 控制来稳定人物,但可能存在分区生成的人物连续性低、lora 控制不强等问题。 Latent Couple 的做法(文中未提及,需进一步探索)。 此外,关于 Lora 模型: 1. Lora 可以固定照片的特征,如人物特征、动作特征和照片风格。 2. 点击“生成”下面的第三个按钮,找到 Lora 选项,可添加下载保存到电脑的 Lora 模型,Lora 可叠加使用,但新手不建议使用太多,且 Lora 之间用英文逗号隔开,每个 Lora 后面的数字用于调整权重,一般只会降低权重。选择 Lora 应根据最初想要生成的照片类型决定。
2024-09-27