直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

coze相关资源在哪里

回答

以下是关于 Coze 的相关资源:

此外,字节对 Coze 的官方解释为:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。个人认为 Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了国内版和海外版两个站点。

AI Agent 的开发流程中,Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

字节的官方解释如下:Coze是新一代一站式AI Bot开发平台。无论你是否有编程基础,都可以在Coze平台上快速搭建基于AI模型的各类问答Bot,从解决简单的问答到处理复杂逻辑的对话。并且,你可以将搭建的Bot发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动我个人认为:Coze是字节针对AI Agent这一领域的初代产品,在Coze中将AI Agent称之为Bot字节针对Coze这个产品部署了两个站点,分别是国内版和海外版国内版网址:https://www.coze.cn官方文档教程:https://www.coze.cn/docs/guides/welcome大模型:使用的是字节自研的云雀大模型国内网络即可以正常访问海外版网址:https://www.coze.com官方文档教程:https://www.coze.com/docs/guides/welcome大模型:GPT-4、GPT-3.5等大模型(你可以在这里白嫖ChatGPT4,具体参考文档:)访问需要突破网络限制的工具参考文档:https://www.coze.com/docs/zh_cn/welcome.html[heading3]AI Agent的开发流程[content]Bot的开发和调试页面布局如下,主要分为如下几个区块提示词和人设的区块Bot的技能组件插件工作流Bot的记忆组件知识库变量数据库长记忆文件盒子一些先进的配置触发器:例如定时发送早报开场白:用户和Bot初次对话时,Bot的招呼话语自动建议:每当和Bot一轮对话完成后,Bot给出的问题建议声音:和Bot对话时,Bot读对话内容的音色下面我们则会逐一讲解每个组件的能力以及使用方式

扣子 AI 工坊 Coze AI Factory 火热开启

[功能概述](https://waytoagi.feishu.cn/wiki/FgwXwEh2LiSqXukr8cPccmMFnOf)[编写提示](https://waytoagi.feishu.cn/wiki/Sh5iwpejbi2tQ7kMpRFcMXUMntg)[记忆库](https://waytoagi.feishu.cn/wiki/JTRpwSnUniK3HukicAhcFwQTnjg)[概述](https://waytoagi.feishu.cn/wiki/JHCQwcab8iUdoEkHxySc87zSnnd)[数据库](https://waytoagi.feishu.cn/wiki/LOWewWnwNirLwFkeMbJcopwWnhb)[扣子知识库介绍](https://waytoagi.feishu.cn/wiki/N0iqw0g0Ciddbckj0dtcjbrNnnh)[创建并使用知识库](https://waytoagi.feishu.cn/wiki/VuNBw3QoZizDA1ktpfVcvlLpnMh)[安装Coze Scraper](https://waytoagi.feishu.cn/wiki/K6XJwBqjViIihrkLSQVcVprnntg)[插件介绍](https://waytoagi.feishu.cn/wiki/YGSVwkS49iUapbkHAC8cXL6Znrc)

13. Agent 相关比赛

[功能概述](https://waytoagi.feishu.cn/wiki/FgwXwEh2LiSqXukr8cPccmMFnOf)[编写提示](https://waytoagi.feishu.cn/wiki/Sh5iwpejbi2tQ7kMpRFcMXUMntg)[记忆库](https://waytoagi.feishu.cn/wiki/JTRpwSnUniK3HukicAhcFwQTnjg)[概述](https://waytoagi.feishu.cn/wiki/JHCQwcab8iUdoEkHxySc87zSnnd)[数据库](https://waytoagi.feishu.cn/wiki/LOWewWnwNirLwFkeMbJcopwWnhb)[扣子知识库介绍](https://waytoagi.feishu.cn/wiki/N0iqw0g0Ciddbckj0dtcjbrNnnh)[创建并使用知识库](https://waytoagi.feishu.cn/wiki/VuNBw3QoZizDA1ktpfVcvlLpnMh)[安装Coze Scraper](https://waytoagi.feishu.cn/wiki/K6XJwBqjViIihrkLSQVcVprnntg)[插件介绍](https://waytoagi.feishu.cn/wiki/YGSVwkS49iUapbkHAC8cXL6Znrc)

其他人在问
coze教学
以下是关于 Coze 教学的相关内容: 一泽 Eze 提供了万字实践教程,可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能跟学,学会 AI Agent 从设计到落地的全流程方法论。阅读指南中提到长文预警,可视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能按模板生成结构化内容的 AI Agent、开源 AI Agent 设计到落地的全过程思路、10 多项常用的 Coze 工作流配置细节、常见问题与解决方法。适合玩过 AI 对话产品的一般用户以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。本文不单独讲解案例所涉及 Prompt 的撰写方法,文末「拓展阅读」中有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容以供前置或拓展学习。 7 颗扣子 coze 的搭建有相关视频教程,包括: 第一颗扣子野菩萨出品:2 分钟解锁超野速度的图像流 bot 创建过程,献上野菩萨的明信片,链接:https://www.coze.cn/store/bot/7384556560263020583 。 第二颗扣子Stuart:2 分钟教您制作炉石卡牌,链接:https://www.coze.cn/s/i68g8bLY/ ,原理拆解: 。 第三颗扣子陈慧凌:2 分钟做毛毡效果,链接:https://www.coze.cn/s/i65gDW2Y/ 。 第四颗扣子银海:银河照相馆,链接:https://www.coze.cn/store/bot/7384885149625761801 。 第五颗扣子Speed 团队:Speed 团队菜品秀秀,链接:https://www.coze.cn/store/bot/7384434376446148618 ,原理拆解: 。
2024-11-21
怎样用Coze用来分析财报并生成图表?
使用 Coze 分析财报并生成图表的实现过程如下: 1. 工作流中的数据解析:用户上传 Excel 后,在工作流中获取 Excel 链接,通过插件下载并读取其中的数据。 最初尝试将解析出的 Excel 数据以单元格形式存到 bot 数据库,利用大模型根据单元格数据和用户提问生成答案,但大模型计算能力差,常出现计算错误。 改为将 Excel 转换为数据表,使用大模型把用户问题转换为 SQL,准确率很高。 由于 Coze 不能动态创建表,自行编写服务,在动作流中调用,根据 Excel 的 URL 动态创建表并插入数据,将表名存到 Coze 数据库,以便后续根据表名动态执行 SQL 获取数据。 2. 报表生成: 根据数据库表字段信息,使用大模型为用户生成 3 个推荐报表,包含标题、描述、查询 SQL,限制每次查询数据为 100 条。 拿到 SQL 后,使用插件动态执行查询数据,再根据标题和数据使用大模型转换为绘制 Echarts 图表的参数。 绘制图表,官方插件生成的图表较模糊,自行编写插件提高清晰度,并将图片放大三倍。 3. 其他相关操作: 查看大图时,把多张图片合成一张,图像流不支持合成图片,自行编写插件实现。 图表生成成功后,将图表链接存到数据库,为查看报表做准备。 大模型生成的 SQL 有时出错,可将报错信息和 SQL 传给大模型修复后重新执行,大模型生成的非标准 JSON 也可用此方案修复。 查看报表时,从数据库中查询图表链接,调用合并图片插件将几张图表合并成一张大图。 删除图表根据用户输入的标题从数据库中删除。 添加图表与前面解析 Excel 数据生成报表流程类似,用户输入标题后生成查询 SQL,后续步骤相同。
2024-11-20
如何使用coze搭建智能体
以下是使用 Coze 搭建智能体的步骤: 1. 进入 Coze 官网(https://www.coze.cn/home)。 2. 点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 3. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 4. 了解编辑视图与功能,左侧「选择节点」模块中,根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展智能体的能力边界。如思维导图、英文音频等无法通过 LLM 生成的内容,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如中文翻译、英文大纲、单词注释等。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 5. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 6. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,完成工作流框架的搭建。 对于图像工作流: 1. 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 2. 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,即提示词对效果图的影响度;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 3. 按照构架配置工作流,调试工作流效果,调试毛坯房测试用例(https://tgi1.jia.com/129/589/29589741.jpg)。 4. 开始节点对应配置三项内容,进行提示词优化。 5. 设定人设和回复逻辑,然后点击右上角发布。
2024-11-20
如何给coze中自创的智能体设置权限
要给 Coze 中自创的智能体设置权限,您可以按照以下步骤进行操作: 1. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 给令牌起一个名字。 为了方便选择永久有效。 选择制定团队空间,可以是个人空间、也可以选择团队空间。 勾选所有权限。 保存好令牌的 Token,切勿向他人泄露。 2. Coze 设置: 获取机器人 ID:在个人空间中找到自己要接入到微信中的机器人,点击对应的机器人进入机器人编辑界面,在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 API 授权:点击右上角发布,会发现多了一个 Bot as API,勾选 Bot as API,确定应用已经成功授权 Bot as API。 3. 服务器设置: 购买云服务器:推荐使用腾讯云服务器,新用户专享 28 元/年一台云服务器,如果售罄可以购买 82 元/年的,购买选项中选择宝塔 Linux 面板 8.1.0 腾讯云专享。 云服务器设置密码:选择暂不需要教学场景,点击宝塔 Linux 面板,通过远程登录的密码/密钥登录的重置密码来初始化密码,设置好密码并妥善保存。 获取宝塔 Linux 地址:点击控制面板中的应用信息的管理应用,获取宝塔应用有两种方法。第一种是在浏览器中直接输入;第二种是在复制完“sudo /etc/init.d/bt default”,然后点击后面的登录按钮,输入密码后,将刚刚复制的内容粘贴到提示符后,然后点击回车。系统会反馈外网面板地址和内网面板的地址,主要使用外网面板地址。此时还不能直接打开面板地址,需要在防火墙中设置外网可以使用 8888 端口。 设置宝塔的密码:登录宝塔 Linux 面板,输入在对话框中输入修改密码编号 5,然后输入新的密码,系统会返回新的用户名和密码,用户名和密码要妥善保存。 此外,在部署完成后,您还可以: 1. 使用飞书·稍后读助手: 得益于飞书 app 的多平台支持,您可以电脑、手机端通过飞书机器人与稍后读助手进行对话。 直接在 Coze 商店中与 bot 进行对话。 如果还选择了部署到微信服务号、订阅号,也可以通过这些渠道调用 bot。 2. 设置稍后读存储地址: 首次使用,请按以下步骤设置您的稍后读存储位置: 访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 您还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整您的稍后读存储位置。 3. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据,授权通过后,再次输入需要收藏的页面链接,即可完成收藏。 4. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。
2024-11-19
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
Stuart: [教学向] 我把Coze比赛第一的bot拆了教大家
以下是关于 Stuart 把 Coze 比赛第一的 bot 拆解教学的相关内容: 首先恭喜“急诊室的一夜”bot 荣获全赛道第一。本文纯教学导向,目的是让大家能更好地了解这个 bot 怎么捏,后文有所有提示词和工作流,文末还会结合经验讲解这个 bot 值得学习和需要优化的地方,这两天也会在 waytoAGI 社区的 coze 小组里复刻一个方便大家研究学习。 Bot 整体框架: 1. 采用 32K 的 kimi 模型,只有一条工作流。 调用设计:这个工具有 5 个按钮,A、B、C、重新开始、结束并总结。按 A/B/C 时,会直接输入对应的字母文字。按结束并总结时,输入的依旧只是文字:“结束并立即总结医学知识点”。点击“重新开始”时,直接调用了一个工作流“emergency”,且这个工作流有两个必选参数:“疾病设置”和“难度设置”。在实际体验过程中,仅在提供“疾病设置”和“难度设置”时,工作流被调用,其他时候没有触发任何工具和工作流。 2. 有了以上信息,就知道了这个 bot 的大体框架和思路: 第一步:通过给出疾病设置和难度设置触发工作流,输出一个故事,带图的,并且还输出了第一个问题。 第二步:在用户回答了第一个问题后,让大模型给第一个问题的选项打分,并造出第二个问题。这里有一个很重要的点,在造第二个问题时没有读取变量或者其他存储,因此用的是聊天的上下文。这里有一个猜测的点,为了保证后文能记住前面所有的选择结果,这里需要进行模型上下文对话的轮数配置(很重要)。 第三步:依次循环,直到回答了 5 个问题,给了个总结。或者中间用按钮“结束...”来中断过程。 相关工作流案例合集:
2024-11-19
想学习AI编程需要从哪里开始,有什么资源吗
如果您想学习 AI 编程,可以从以下几个方面开始,并参考以下资源: 开始的方向: 1. 明确编程目标:确定您希望通过 AI 编程实现的具体任务或项目。 2. 了解 AI 编程的边界和限制:明白在何种情况下需要编程,何种情况下可以利用现有工具和资源。 学习资源: 1. 掌握 Python 基础: 基本语法:包括变量命名、缩进等规则。 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数、理解参数和返回值、掌握作用域和命名空间。 模块和包:学会导入模块和使用包来扩展功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常及如何处理程序中的错误。 文件操作:掌握文件读写和文件与路径操作。 2. 在线教程和课程:例如“写给不会代码的你:20 分钟上手 Python + AI”。 3. 项目实践:通过实际项目来巩固所学知识。 开发建议: 1. 对于复杂的项目,如 P2P 传输程序,要充分考虑项目初始化、环境配置、库的选择等。 2. 对于 Rust 环境配置,可通过官网获取安装指南,使用 rustup 工具管理 Rust 版本。使用 cargo new <project_name>创建新的 Rust 项目,生成基本文件结构和 Cargo.toml 文件来管理项目依赖。 在学习过程中,优先寻找线上工具、插件和本地应用,先找现成的开源工具和付费服务,只有在没有现成方案时再考虑自己编程。
2024-11-21
人工智能在人力资源管理的应用
以下是关于人工智能在人力资源管理应用的相关内容: 在就业、工人管理和自雇职业中使用的人工智能系统,特别是用于招聘和选拔人员、做出影响工作合同关系晋升和终止的决定、分配任务、监测或评估人员等方面,应当列为高风险,因为这些系统可能对人的未来职业前景、生计和工人权利产生重大影响,还可能延续历史上的歧视模式,损害个人的数据保护和隐私权利。 相关报告: 《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 《量子位:AI 视频生成研究报告》 《量子位:中国具身智能创投报告》具身智能正成为人工智能的新浪潮,广泛应用于物理实体,其发展得益于大模型和生成式 AI 的进步。 人工智能在招聘中的潜在风险与应对策略: 应对策略:更新人力资源程序以限制潜在不同影响;对人力资源技术提供商进行尽职调查;修改当前的人力资源隐私声明以符合法规;对 AI 的训练数据进行审查确保质量和无偏差;告知申请人有关数据收集和 AI 筛选流程的细节保障信息透明度;提供合理便利措施确保少数群体不被排除;定期评估 AI 筛选结果及时优化。 建议:企业采用 AI 辅助招聘工具时,必须考虑法律风险和道德责任,确保公平、无偏见的招聘环境,同时遵守相关法律法规。通过综合策略和审慎方法,有效利用 AI 优势并规避潜在风险。
2024-11-19
AI怎样运用在人力资源的工作中
AI 在人力资源工作中的运用包括以下方面: 1. 招聘:例如使用 GPT4 技术的实时转录工具帮助求职者生成面试回答。 2. 绩效管理:根据团队和个人绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 3. 数字化文件管理:如 PeopleSoft 和 Workday 将人力资源文件柜数字化。 同时,人工智能在人力资源领域的运用也存在潜在风险,应对策略包括: 1. 更新人力资源程序,以限制潜在的不同影响。 2. 对人力资源技术提供商进行尽职调查。 3. 修改当前的人力资源隐私声明,以符合国家隐私或 AI 相关法规。 4. 对 AI 的训练数据进行审查,确保其质量并无偏差。 5. 告知申请人有关数据收集和 AI 筛选流程的细节,保障其信息透明度。 6. 提供合理的便利措施,确保残障申请人和其他少数群体不会被排除在外。 7. 定期评估 AI 筛选结果,发现任何潜在的歧视并及时优化。 企业在采用 AI 辅助人力资源工作时,必须考虑法律风险和道德责任,确保公平、无偏见的工作环境,同时遵守相关的法律法规。通过综合策略和审慎的方法,企业可以有效利用 AI 的优势,同时规避潜在的风险。
2024-10-15
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源
在人工智能时代,最重要的三个基石通常包括以下方面: 1. 架构:如 Transformer 和 Diffusion 这两种核心架构,分别在数据转换和数据向图像转换方面发挥关键作用,构成了当前 AI 技术的重要基础。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术的进步提供强大支持。 3. 人才网络:AI 领域的关键人才网络起到不可忽视的作用,例如 Google 及其相关实验室和收购的公司培养和汇聚了众多杰出人才,他们的流动与合作推动了 AI 技术的发展。 关于这三个基石的资源,您可以通过以下途径获取: 1. 科技类的专业网站和论坛,如一些知名的技术社区和学术网站。 2. 相关的学术研究报告和论文,可在学术数据库中查找。 3. 行业内的权威专家和学者的讲座、演讲等。 4. 科技公司发布的技术文档和报告。
2024-10-10
在哪里可以找到数据 算力 算法的资源
以下是一些可以找到数据、算力、算法资源的途径: 关于数据:数据集对人工智能学习算法发展至关重要,AI 伴随着神经网络的发展而出现,多层神经网络大规模数据分析技术中的数据集是重要资源。 关于算力:您可以通过以下链接了解算力的相关内容: 算力的字面意思就是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU,哪怕购买云服务,也是服务商买显卡“租”给您用。 关于算法:目前没有明确给出具体的算法资源获取途径,但您可以通过相关的学术网站、技术论坛等渠道进一步搜索。
2024-10-10
人工智能时代下最重要的三个基石是什么,我们可以在哪里找到这三个基石的资源? 例如: huggingface
在人工智能时代,最重要的三个基石分别是架构、算力和人才网络。 架构方面,当前市场上许多令人惊叹的 AI 技术成就都可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的重要基石。 算力方面,自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的提升,为 AI 技术的进步提供了强大支持。 人才网络方面,AI 领域的关键人才大多源自于 Google,特别是其在加拿大多伦多和蒙特利尔成立的两个实验室,以及收购的英国公司 DeepMind。这些机构和个人形成了强大的人才网络,推动了 AI 技术的发展,并培养了一批杰出的领军人物。人才在不同公司之间的流动和合作也促进了 AI 技术的快速进步。 关于这三个基石的资源,目前没有明确提及具体的获取渠道。但您可以通过以下途径寻找相关资源: 1. 学术研究网站和数据库,如知网、Web of Science 等,以获取关于架构、算力和人才网络的学术研究成果。 2. 科技行业的专业论坛和社区,与同行交流和分享资源。 3. 关注知名科技公司和研究机构的官方网站和社交媒体账号,获取最新的研究动态和资源。
2024-10-10
如何画热力图,帮助我们分析数据相关系数
以下是关于如何画热力图来分析数据相关系数的步骤: 1. 完成前面的 MMM 运行步骤。 2. 进行关联性分析,可绘制热力图(颜色可自行调整)。 3. 计算相关性,注意在真实场景中,若出现负相关性,需考虑是否缩减投入或进行其他决策。 4. 模型流程主要在前几步,后面的可视化和其他分析自由度较高。 您可以在 Colab 上的部署地址(https://colab.research.google.com/drive/1vzMbUuGsaFHlnl9CKFXgxXn8aqWaw60I?usp=sharing)直接进行测试,并欢迎提出新的优化意见。
2024-11-22
你现在是一个学习AI 方面的小白,你下定决心要去学习AI的相关知识。你应该从哪入手
对于决心学习 AI 相关知识的新手,建议从以下方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,若希望继续精进 AI 学习,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
ai+教育相关
以下是一些与“AI + 教育”相关的案例和内容: 学习:用 AI 做播客笔记,干货为主的播客可用此方式做笔记,还能顺便学英语。 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用这条 prompt,2 小时帮同学干完了 3 篇调研报告,先确定调研报告大纲目录。 做调研:用 ChatGPT 做调研,研究其如何帮助创建用户体验调查或其他调查。 书籍推荐:三本神经科学书籍,AI 是多学科交叉产物,基础学科知识能为运用 AI 打开新天地。 AI 赋能教师全场景,来自 MQ 老师的投稿贡献。 未来教育的裂缝:如果教育跟不上 AI,人工智能融入教育领域为教学模式带来颠覆性改变。 化学:使用大型语言模型进行自主化学研究。 医疗:健康生物制药的研究,AI 加速医疗健康生物制药研究,在抗癌等方面有重要作用。 AI 洞察:一线医生如何实际使用 ChatGPT,再现 ChatGPT 在美国一流医院的实际场景。 笔记:与 AI + 教育前辈聊天,让某人主动学习 AI 的有效方式是让其看到 AI 能高效完成手头工作。 数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性。
2024-11-18
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15