直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI知识库有什么

回答

AI 知识库主要包括以下内容:

  • 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。
    • 特点:
      • 由一群热爱 AI 的专家和爱好者共同建设。
      • 大家贡献并整合各种 AI 资源,使大家可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。
      • 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程。
      • 追踪 AI 领域最新的进展,时刻更新,让用户每次访问都能有新的收获。
    • 链接:
      • https://waytoagi.com/
      • 即刻体验:https://waytoagi.com/

此外,还有关于 Coze 的知识库相关内容,如大圣撰写的文章,帮助非编程人士理解 AI 时代的知识库,包括其概念、实现原理、能力边界,以及在通往 AGI 之路大群中通过对话获取知识库中资料的原理,还有如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造更加强大的智能体。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

知识库有什么|感谢银海 inhai

“我们都知道,探索知识善如磨刀,面对复杂多元的在人工智能(AGI)领域,如何打破条条框框,去捕捉每一丝有价值的信息和知识呢?那么我相信答案就是:通往AGI之路「WaytoAGI」,一个由开发者、学者和有志人士等等参与的学习社区和开源的AI知识库。在这里,你既是知识的消费者,也是知识的创作者。这个世界上有很多走走停停的探索者,所以,我们以"无弯路,全速前进"为目标,助力每一个怀揣AI梦想的人能疾速前行。每一份崭新的尝试都值得赞美,每一份坚毅的付出都应得到鼓励。AI知识库的生长正得益于每一个你平凡而坚持的时间,因为你们的一致肯定和支持,我们才充满信心,不断修炼,探寻AGI领域的无限可能。「通往AGI之路」不仅是一个知识库,它是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。我们在共创计划的道路上,不断收获,快速成长。对于一切,我们都满怀期待,乐观向阳。继续坚持,信息世界中你我皆是探索者。感谢您对“通往AGI之路”的持续关注!通过举办的活动和分享,我们有幸获得了一些奖项和媒体报道,这一切都离不开大家的鼎力支持。我们深感荣幸,并期待在未来的旅程中,能够持续为大家带来更多、更好的内容。

知识库有什么|感谢银海 inhai

原文《WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!》你是否在为如何学习AI?何处学习AI困惑不已?割韭菜套路那么多,如何不上当?我认为AI知识库WayToAGI(通往AGI之路)就是一个满分答案。WayToAGI是由一群热爱AI的专家和爱好者共同建设的开源AI知识库,大家贡献并整合各种AI资源,使得大家都可以轻松学习各种AI知识,应用各类AI工具和实战案例等。WayToAGI提供了一系列开箱即用的工具,文生图、文生视频、文生语音等详尽的教程,将你的文字化为视觉与听觉的现实。追踪AI领域最新的进展,时刻更新,让你紧跟AI领域的步伐,每次访问都能有新的收获。无论你是AI初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因AI而强大。🔗:https://waytoagi.com/(通往AGI之路)🚀即刻体验:https://waytoagi.com/

这可能是讲 Coze 的知识库最通俗易懂的文章了

大家好,我是大圣,一个致力于使用AI技术将自己打造为超级个体的程序员。对于知识库大家并不陌生,一系列的信息和知识聚集在一起就可以构成知识库。比如我最心爱的[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)就是一个使用飞书软件搭建的AI知识库。当你需要了解AI某一领域知识的时候,你只需要在AGI的飞书大群中,跟机器人对话就能获取对应的资料。而在我的[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)也是以AI时代的知识库作为例子进行了讲解。这篇文章的目的就是帮助非编程人士来理解AI时代的知识库,读完本文你会收获:1.AI时代的知识库的概念、实现原理以及能力边界2.通往AGI之路大群中的通过对话就能获取知识库中资料的原理3.更好的使用Coze等AI Agent平台中的知识库组件,打造更加强大的智能体请允许我自卖自夸:我这篇文章可以说是知识库文章中Coze讲的最好的,讲Coze的文章中知识库讲的最好的。另外做个预告,我正在规划一个关于AI时代你应该具备的编程基础系列,大纲如下:数据库|让Coze拥有了记忆的组件1知识库|让Coze拥有了记忆的组件2变量|让Coze拥有了记忆的组件3JSON|让你更好的使用Coze插件API|外部应用程序该如何接入Coze操作系统与服务器|那些接入了Coze的微机器人都是运行在哪里的Docker|让你用最简单的方式部署微信机器人

其他人在问
结构仿真分析中AI应用
在结构仿真分析中,AI 有着多方面的应用。 在绘制逻辑视图、功能视图、部署视图方面,以下是一些可用的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在 2024 年,AI 在生物医学、气象预测等领域也有重要突破与应用: 1. 诺贝尔物理学奖和化学奖先后颁给 AI,推动了机器学习的理论创新,揭示了蛋白质折叠问题,标志着人工智能真正成为一门科学学科和加速科学的工具。 2. 基于深度学习和 Transformer 架构的蛋白质结构预测模型——AlphaFold 3,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,为细胞功能解析、药物设计和生物科学的发展提供有力支持。 3. DeepMind 展示新的实验生物学能力——AlphaProteo,能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 4. 生物学前沿模型的扩展:进化规模 ESM3,是一种前沿多模态生成模型,在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 5. 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-11-22
最新AI资讯
以下是为您提供的最新 AI 资讯: 新手学习 AI 方面:AI 是快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 方面: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: ShowMeAI 周刊 No.12 方面: JENOVA:AI Reddit 搜索& AI Youtube 搜索功能上线,以及为啥这个需求爆了? Artifacts:与 AI 交互的形式,正在被开发者们玩出新花样 画布:更彻底的 AI 交互革命,从一维走向二维的 LLM 交互新体验 再见,会读!为体面的退场鼓掌!&&源源不断冒出的更多新产品们 AI 编程:江山代有 AI 出,各领风骚数十天,以及 AI Coding 赛道洞察 AI 陪伴:EVE 创始人 VS C.AI 工程师,到底谁才是真正的 AI 陪伴? AI 原生游戏:1001 Nights 和 Oasis,两个极端,哪种才是真正的 Native 方向? Kimi:杨植麟身陷诉讼风波,发布数学推理模型 k0math,但是回应不了一切? Scaling Law:如果此路不通向 AGI,敢问路在何方? 社群讨论:如何选择创业产品的承载形式:App、网站、小程序
2024-11-22
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势。以谷歌 Gemini 为例,它简化了用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,用户通过简单语音命令即可完成一系列复杂任务,重新定义了人与技术的互动方式。 对于 ChatGPT,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象,这是连接 GPT 能力与外部工具和 API 的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择并构建必要的结构化 JSON 输入触发 API 执行产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中执行计算并生成复杂查询。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-11-22
推荐一款国内不错的AI视频生成软件
以下为您推荐几款国内不错的 AI 视频生成软件: 1. 可灵:在 AI 视频生成领域表现出色,具有以下优势: 卓越的视频生成质量,与国际顶级模型相当,能满足普通用户和专业创作者的需求。 生成速度快,处理效率高于国外同类产品,提升用户工作效率。 对国内用户可访问性强,提供便捷、稳定的使用体验。 2. Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文均可,文生视频支持多种控制,可生成 5s 和 15s 的视频。网址:https://hidreamai.com//AiVideo 3. ETNA:由七火山科技开发,可根据简短文本描述生成相应视频内容,生成视频长度 8 15 秒,画质可达 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文,时空理解。网址:https://etna.7volcanoes.com/ 此外,还有 Pika、SVD、Runway、Kaiber、Sora 等国内外提供此类功能的产品,您可以根据自己的具体情况进行选择。更多的文生视频网站可查看: 需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
AI提示词方法
以下是关于 AI 提示词方法的全面介绍: 优化和润色提示词(Prompt)对于提高文生图、对话等 AI 模型的输出质量非常重要,方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述想要表达的内容,避免过于笼统。 2. 添加视觉参考:在 Prompt 中插入相关的图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意料之外的输出,添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 编写 prompt 时,还应遵循以下建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,提供足够的上下文。 3. 使用清晰的语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:如有特定期望结果,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,避免过多信息使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好地理解任务的主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代。 在星流一站式 AI 设计工具的 prompt 输入框中: 1. 提示词用于描绘画面。 2. 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 3. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图,提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。
2024-11-22
小白学习AI怎么开始
对于小白学习 AI,可以从以下几个方面开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-22
知识库软件有什么推荐的吗
以下是为您推荐的一些知识库软件: 稿定 AI:国内设计工具稿定推出的 AI 创意工具合集,包括设计宣传图、绘图、素材、商品图、文案、AI 圈等功能,能切中国内内容营销的痛点,体验良好。 OpenCat:由开发,推出了付费订阅计划,每月 18 元可无限使用 GPT3.5 及一些软件的高级功能,如 iCloud 同步、AI 键盘等。 Tana:非常强大的知识管理软件,推出了 AI 相关功能,不仅能扩写文本,还能与您的所有数据交互并访问网上信息。 Read Speak:由开发的利用 ChatGPT 联系口语的 APP,支持与虚拟角色对话边学边练,具有实时发音评价、实时语法纠错等功能。 STUDIO AI:AI 驱动的无代码网页构建工具,能学习用户反馈并将设计转化为实际网站,内含 WebDesignAI,具有自动补全样式和内容的功能,支持语音控制编辑器完成日常设计任务。 Clarity:AI 驱动的分层阅读工具,提供分层的深度阅读功能,用户可从摘要开始掌握复杂主题,通过点击相应内容了解更多细节。 如果您想搭建个人知识库,还可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用时可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。
2024-11-22
有什么知识库的应用推荐?
以下是为您推荐的知识库应用: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库。其中提到大模型存在不准确和数据限制的问题,知识库可解决这些问题,典型应用如客服系统,公司可将用户问题及答案记录在文档中以知识库形式投喂给大模型,使大模型更准确回复用户。 01通往 AGI 之路知识库使用指南。涵盖智能纪要、总结等内容,包括关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 张梦飞:【知识库】FastGPT + OneAPI + COW 带有知识库的机器人完整教程。包括创建知识库应用的步骤,如地址输入、模型选择、创建和上传文件等,以及安装并接入 cow 的操作流程。
2024-11-22
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
如何将知识库里的文件进行分类清晰数据,使其变得更加智能化
以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法: 1. 在线知识库 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 点击添加 Bot,并在调试区测试效果。 2. 本地文档 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用 点击发布,确保在 Bot 商店中能够搜到。 4. 飞书知识库 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。 5. Excel 知识库 可以增加其他形式的知识库。 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。 6. 网页知识库 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。 7. 创建知识库并上传文本内容 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
2024-11-21
如何做好中国市场的知识库可以让ai学习并给出详细的三年计划
很抱歉,目前知识库中没有关于如何做好中国市场的知识库让 AI 学习并给出详细三年计划的相关内容。但一般来说,要做好这个计划,您可以从以下几个方面考虑: 1. 市场调研:深入了解中国市场的特点、需求、竞争态势等,为 AI 提供丰富准确的数据。 2. 数据整理:将收集到的市场信息进行分类、清洗和标注,以便 AI 能够有效学习。 3. 设定目标:明确三年中在市场份额、客户满意度、品牌知名度等方面的具体目标。 4. 阶段规划:第一年着重基础建设,如数据积累和模型训练;第二年优化模型,拓展应用场景;第三年实现规模化应用和持续优化。 5. 技术支持:确保有足够的技术团队来维护和更新 AI 系统。 6. 反馈机制:建立有效的反馈渠道,根据市场变化和用户反馈及时调整 AI 的学习方向。 以上只是一个初步的框架,您还需要根据具体的行业和市场情况进行进一步的细化和完善。
2024-11-20
如何组建自己的本地知识库
以下是组建自己本地知识库的详细步骤: 一、了解 RAG 技术 因为利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,所以在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation)。当需要依靠不包含在大模型训练集中的数据时,通过检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 RAG 应用可抽象为以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起生成更加合理的答案。 二、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 三、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 安装地址:https://useanything.com/download 。安装完成后,会进入到其配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: 1. 在 AnythingLLM 中创建自己独有的 Workspace 跟其他的项目数据进行隔离。 2. 首先创建一个工作空间。 3. 上传文档并且在工作空间中进行文本嵌入。 4. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 5. 测试对话。当上述配置完成之后,就可以跟大模型进行对话了。 最后,送给大家一句话:看十遍不如实操一遍,实操十遍不如分享一遍。如果对 AI Agent 技术感兴趣,可以联系作者或者加免费知识星球(备注 AGI 知识库)。
2024-11-19