Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何将知识库里的文件进行分类清晰数据,使其变得更加智能化

Answer

以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法:

  1. 在线知识库
    • 点击创建知识库,创建一个画小二课程的 FAQ 知识库。
    • 飞书在线文档中每个问题和答案以###分割,可点击编辑修改和删除。
    • 点击添加 Bot,并在调试区测试效果。
  2. 本地文档
    • 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。
    • 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。
    • 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。
    • 然后选择创建知识库自定义清洗数据。
  3. 发布应用
    • 点击发布,确保在 Bot 商店中能够搜到。
  4. 飞书知识库
    • 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。
    • 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。
    • 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。
  5. Excel 知识库
    • 可以增加其他形式的知识库。
    • 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。
    • 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。
  6. 网页知识库
    • 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。
    • 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。
    • 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。
  7. 创建知识库并上传文本内容
    • 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
Content generated by AI large model, please carefully verify (powered by aily)

References

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

本次创建知识库使用手动清洗数据,上节课程是自动清洗数据:[【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索](https://a1i1hjmvcf0.feishu.cn/docx/JSdDd8ybLo7OHqxmePwcHlbLn3b?from=from_copylink),自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。[heading3]3.1在线知识库[content]点击创建知识库,创建一个画小二课程的FAQ知识库知识库的飞书在线文档,其中每个问题和答案以###分割,暂时不要问为什么。选择飞书文档选择自定义的自定义输入###然后他就将飞书的文档内容以###区分开来,这里可以点击编辑修改和删除。点击添加Bot添加好可以在调试区测试效果[heading3]3.2本地文档[content]本地word文件,这里要注意了~~~如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面画小二这个课程80节课程,分为了11个章节,那训练数据能不能一股脑全部放进去训练呢。答案是~~不能滴~~~正确的方法,首先将11章的大的章节名称内容放进来,如下图所示。章节内详细内容格式如下如所示,如果你再分节的内容,依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理然后选择创建知识库自定义清洗数据,这里不再赘述。[heading3]3.3发布应用[content]点击发布确保在Bot商店中能够搜到,如图所示可以搜索到画小二智能小助手,这个很重要,没有通过发布的获取不到API的。

【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索

网址:Coze.cn2、创建[heading2]2、人设与回复逻辑设置[heading2]3、创建知识库[content]选择文本创建知识库选择飞书,因为我的很多资料都在飞书里面存着[heading3]3.1飞书知识库[content]在飞书里面选择对应的文件夹,一次做多智能选择20个文件(如果文件大于20个可以多建几个知识库)可以选择自动进行数据清洗,数据清洗不是要不数据清楚,而是把数据进行类结构化整理数据清洗进度内容中的图片资料也会保留测试对话,基本反馈正常,目前coze存在不稳定版本,需要不断调试完善。[heading3]3.2 Excel知识库[content]同时也可以增加其他形式的知识库上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的Sheet数据处理完成就显示100%进度加工出来的数据,点击添加Bot,就增加到知识库中测试发布测试返回[heading3]3.3网页知识库[content]选择有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂,等下节课程我们专门分享。这里我们选择批量添加,写入画小二官网的地址https://www.huaxiaoer.com.cn/这里你可以根据需求添加自己的网站然后就将网站所有的页面都扫描出来,点击确认。将全站数据解析并保存到知识库里面按照默认自动清洗数据数据清洗进度将网站所有数据清洗出来将网站添加到知识库里面

创建并使用知识库

|上传方式|操作步骤||-|-||本地文档|1.在文本格式页签下,选择本地文档,然后单击下一步。<br>2.将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。<br>目前支持上传.txt,.pdf,.docx格式的文件内容。<br>每个文件不得大于20M。<br>一次最多可上传10个文件<br>1.当上传完成后单击下一步。<br>2.选择内容分段方式:<br>2.1.自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。<br>2.2.自定义:手动设置分段规则和预处理规则。<br>分段标识符:选择符合实际所需的标识符。<br>分段最大长度:设置每个片段内的字符数上限。<br>文本预处理规则:<br>替换掉连续的空格、换行符和制表符<br>删除所有URL和电子邮箱地址<br>1.单击下一步完成内容上传和分片。|

Others are asking
知识库中已有的ai工具按能力分类列举
以下是知识库中已有的 AI 工具按能力分类列举: 工具入门篇 数据工具: 多维表格小白之旅 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求 编程工具: Cursor 的小白试用反馈 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 音乐工具: Suno 的小白探索笔记 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作 100 个 AI 应用 81 100: AI 菜谱口味调整工具 已有产品:下厨房口味调整功能 一句话介绍:根据用户反馈调整菜谱口味。 AI 语言学习纠错平台 已有产品:英语流利说纠错功能 一句话介绍:帮助语言学习者纠正错误。 AI 电影剧情分析系统 已有产品:豆瓣电影剧情分析工具 一句话介绍:分析电影剧情,提供深度解读。 AI 办公文件分类系统 已有产品:腾讯文档分类功能 一句话介绍:自动分类办公文件,方便管理。 AI 美容护肤方案定制平台 已有产品:美丽修行定制方案功能 一句话介绍:根据用户肤质定制护肤方案。 21 40: AI 菜谱生成平台 已有产品:豆果美食 APP 一句话介绍:根据用户口味和现有食材生成个性化菜谱。 AI 语言学习助手 已有产品:沪江开心词场 一句话介绍:辅助用户学习语言,提供个性化学习方案。 AI 电影推荐系统 已有产品:爱奇艺智能推荐 一句话介绍:根据用户喜好推荐电影,发现优质影片。 AI 办公自动化工具 已有产品:WPS Office 一句话介绍:提高办公效率,实现自动化办公流程。
2025-01-23
如何构建企业AI知识库
构建企业 AI 知识库可以参考以下步骤: 1. 结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可以进行模型的 Finetuning(微调),以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 2. 确定功能范围,包括编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 选择创建知识库路径,如个人空间知识库创建知识库。 支持的知识库文档类型包括本地文档、在线数据、飞书文档、Notion 等,可根据需求选择,如本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,便于自动切分数据。分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行相应操作。 在构建过程中,KnowHow 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
2025-01-23
本地怎么构建知识库
以下是关于本地构建知识库的详细步骤和相关知识: 一、硬件配置要求 运行大模型需要较高的机器配置,个人玩家可能负担不起。 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 二、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 是指检索增强生成(Retrieval Augmented Generation),当需要依靠不包含在大模型训练集中的数据时,通过以下 5 个过程实现: 1. 文档加载(Document Loading):从多种不同来源加载文档。LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化的数据、SQL 在内的结构化的数据,以及 Python、Java 之类的代码等。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块。 3. 存储:涉及将切分好的文档块进行嵌入(Embedding)转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 三、本地知识库搭建步骤 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后,会进入到其配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话:当上述配置完成之后,就可以跟大模型进行对话了。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可以联系作者或者加作者的免费知识星球(备注 AGI 知识库)。
2025-01-22
如何搭建定制知识库
以下是关于如何搭建定制知识库的相关内容: 要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。 embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gptindex.readthedocs.io/en/latest/ 在基于大模型+知识库的 Code Review 实践中,对于自定义知识库飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。 因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。 最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。
2025-01-22
如何搭建私人知识库
搭建私人知识库可以参考以下方法: 1. 基于 GPT 搭建: 给 GPT 输入(投喂)定制化的知识,但 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,当用户提出问题时,将问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 2. 本地部署大模型搭建: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 RAG 的应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-22
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
智能化的前提条件是什么
智能化的前提条件包括以下方面: 以人为本:人工智能应作为人类的工具,最终目的是提高人类福祉,符合欧盟价值观、各项条约和《宪章》所载的基本权利和自由。 风险评估与规则制定:为确保在健康、安全和基本权利方面对公众利益提供一致和高水平的保护,应为所有高风险人工智能系统制定统一的规则,且规则应与《宪章》等保持一致,并应当是非歧视性的,且符合欧盟的国际贸易承诺。 具体应用中的风险控制:在一些具体情况下,人工智能系统不会导致对特定领域法律利益造成重大损害的风险。例如,执行范围狭窄的程序性任务、改进先前完成的人类活动结果、检测决策模式或偏离情况、执行与所列目的相关评估的准备工作等的人工智能系统,因其任务特点带来的风险有限或降低了风险。 对人类思维方式的理解:要实现智能化,需要理解人类的思维方式,包括决策过程,区分下意识和推理过程等。 模拟人类智能的方法:如自上而下的符号推理方法模拟人类通过推理解决问题的方式,自下而上的神经网络方法模拟人脑结构,还有新兴的多智能体系统、进化方法或遗传算法等。
2025-01-06
目前智能化最好的智能体平台是有哪些?
以下是一些智能化较好的智能体平台: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 您可以根据自身需求选择适合的平台进行进一步探索和应用。
2024-12-26
展开说说公共服务智能化
公共服务智能化是一个涉及多方面的重要领域。 在美国,政府官员正致力于推动人工智能领域的发展,并根据反馈更新相关计划,以规范人工智能的运作,保障其在保护公民权利、安全和国家安全、促进公平、推动民主、促进经济增长和创新公共服务等方面发挥积极作用。 在欧洲,对于使用人工智能系统获取和享受特定的必要私人和公共服务及福利的领域,有严格的规定。特别是在公共机关提供的基本公共援助福利和服务方面,若使用人工智能系统进行决策,可能会对人们产生重大影响,因此某些系统被列为高风险系统。但同时,也不应妨碍公共行政部门开发和使用创新方法,前提是这些系统不会带来高风险。 在英国,人工智能将在实现更好的公共服务、高质量就业和提供学习技能的机会等目标中发挥核心作用。政府已投入大量资金,并认为以结果为导向的方法是实现目标的最佳途径。人工智能已在改善医疗保健、提高交通安全性等方面带来了实际的社会和经济效益,未来有望在更多领域发挥更大作用。
2024-11-20
AI应用于信息展示除了以下这段还能写啥?人工智能对演示文稿、网页、微信公众号和Markdown工具都有影响,正重塑信息展示领域。例如,AI可以简化演示文稿设计布局的调整;通过AI能分析用户行为,优化网页内容和结构;在微信公众号利用AI实现个性化推送和智能回复,提升响应和互动质量。Markdown也可利用AI实现智能化编辑和检查。
以下是 AI 应用于信息展示的其他方面: 1. GPT4VAct 作为多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览,基于 AI 的能力、项目目标人群和服务内容类型,可实现未来互联网项目产品原型设计的自动化生成,使效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 2. 在电影制作方面,可综合应用 AI 工具,如使用 ChatGPT 撰写脚本、分镜、人物设定和旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 3. 在写作方面,AI 可用于草拟各类初稿,如博客文章、论文、宣传材料、演讲、讲座等。还能帮助改进已有的文本,以不同风格创建草稿,激发作者创作出更好的作品,以及协助完成如写邮件、创建销售模板、提供商业计划下一步等任务。
2024-08-15
有哪些能够提升视频清晰度的ai
以下是一些能够提升视频清晰度的 AI 技术和工具: 1. EvTexture:一种新方法,能解决视频细节模糊和抖动问题。利用事件相机捕获的高频动态细节来改善视频的纹理质量,让视频在处理复杂细节(如树叶、衣服上的条纹等)时更加清晰。 详细内容:https://xiaohu.ai/p/10270 ,https://x.com/imxiaohu/status/1805185573352784177 2. RealESRGANVideo:可将视频清晰度提升至 2K 或 4K,提供不同模型处理模式,用户可根据视频内容选择最适合的模型。 详细内容:https://x.com/xiaohuggg/status/1729336570115920325?s=20
2025-01-21
我该如何学习提示词技术,编写清晰、精确的指令,更好地引导 AI 工具产生所需结果,使其成为工作中的得力助手?
以下是关于如何学习提示词技术的一些建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出的质量。 2. 学习构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 避免 AI 幻觉的技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献;询问科学事实时,要求引用已发表的科研论文;询问法律条款时,要求引用官方的法律文件。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程;询问代码功能时,要求逐行解释代码的含义。 明确限制 AI 的生成范围,例如在询问名人名言时,指定名人的姓名和相关主题;询问新闻事件时,指定事件的时间范围和相关关键词。 4. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中获取。 5. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 6. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 7. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新的研究成果和方法论。 总之,精心设计的提示词能最大限度发挥语言模型的潜力,通过多实践、多学习、多总结,最终可以掌握提示词技术的窍门。
2024-12-31
图片变清晰
以下是关于图片变清晰的相关内容: 使用清影大模型: 输入一张图片和相应提示词,清影大模型可将图片转变为视频画面,也可只输入图片让模型自行发挥想象将其扩展为有故事的视频。 选用尽可能清晰的图片,上传图片比例最好为 3:2(横版),支持上传 png 和 jpeg 图像。如果原图不够清晰,可采用分辨率提升工具将其变清晰。 提示词要简单清晰,可选择不写 prompt 让模型自行操控图片动起来,也可明确想动起来的主体,并以“主体+主题运动+背景+背景运动”的方式撰写提示词。 常见的 AI 画质增强工具: AI 画质增强工具利用人工智能技术处理图像,提高质量和清晰度,适用于多种场景。 常见工具包括:Magnific(https://magnific.ai/)、ClipDrop(https://clipdrop.co/imageupscaler)、Image Upscaler(https://imageupscaler.com/)、Krea(https://www.krea.ai/)。更多工具可查看网站的图像放大工具库:https://www.waytoagi.com/category/17 。 用 Stable Diffusion 处理: 将照片放入后期处理,使用 GFPGAN 算法使人脸变清晰。 把图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。
2024-12-29
什么AI工具能提高图片清晰度
以下是一些能够提高图片清晰度的 AI 工具: 1. Magnific:https://magnific.ai/ 2. ClipDrop:https://clipdrop.co/imageupscaler 3. Image Upscaler:https://imageupscaler.com/ 4. Krea:https://www.krea.ai/ 您还可以查看网站的图像放大工具库获取更多工具:https://www.waytoagi.com/category/17 此外,PMRF 也是一种全新的图像修复算法,它不仅能提高图片清晰度,还能确保图片看起来像真实世界中的图像,擅长处理去噪、超分辨率、着色、盲图像恢复等任务。详细介绍:https://xiaohu.ai/p/14489 在线体验:https://huggingface.co/spaces/ohayonguy/PMRF 项目地址:https://pmrfml.github.io 这些工具都具有不同的特点和功能,您可以根据具体需求选择合适的工具进行使用。
2024-12-22
让照片变清晰的AI
以下是关于让照片变清晰的 AI 相关内容: 可以将照片放入后期处理中,使用 GFPGAN 算法将人脸变清晰。具体可参考文章。但此步骤无法将照片中的头发、衣服等元素变清晰。 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免干扰原图。 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,能在显存不够的情况下将图片放大到足够倍数。 常见的 AI 画质增强工具有 Magnific(https://magnific.ai/)、ClipDrop(https://clipdrop.co/imageupscaler)、Image Upscaler(https://imageupscaler.com/)、Krea(https://www.krea.ai/)等。更多工具可查看网站的图像放大工具库:https://www.waytoagi.com/category/17 。这些工具具有不同特点和功能,可根据具体需求选择。
2024-12-20
有没有能够解析百度网盘里的视频,给学习视频整理出完整清晰的笔记的ai免费软件
目前尚未有专门针对解析百度网盘里的视频,并为学习视频整理出完整清晰笔记的免费 AI 软件。但您可以尝试使用一些相关的工具和方法来实现类似的功能。例如,您可以使用语音转文字工具将视频中的讲解转换为文字,然后再利用文本处理软件进行整理和分析。另外,一些笔记软件也具备一定的辅助功能,帮助您更好地整理和归纳信息。
2024-12-04
按你这个分类,机器学习和深度学习是并列的?
机器学习和深度学习不是并列的关系,而是包含关系。 机器学习是人工智能的一个子领域,其核心是让计算机通过对数据的学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供大量数据让机器找出隐藏模式或规律,进而预测新的、未知的数据。 深度学习是机器学习的一个子领域,它尝试模拟人脑的工作方式,创建人工神经网络来处理数据。这些神经网络包含多个处理层,深度学习模型能够学习和表示大量复杂的模式,在图像识别、语音识别和自然语言处理等任务中表现出色。 总之,深度学习是机器学习的一个分支,二者存在包含与被包含的关系。
2025-01-21
AI在教育上应用分类
AI 在教育上的应用主要包括以下几类: 1. 个性化学习:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源,如 Knewton 平台。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:推出智能辅助教学工具,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈,Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行安全实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。
2025-01-14
AI用途分类
AI 的用途分类广泛,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,帮助做出贷款决策。 投资分析,辅助投资者决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,分析客户数据推荐感兴趣产品。 搜索和个性化,改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他应用场景: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 在汽车行业,AI 的应用案例包括: 1. 自动驾驶技术,自主导航和驾驶。 2. 车辆安全系统,预防事故。 3. 个性化用户体验,根据偏好和习惯调整车辆设置。 4. 预测性维护,预测潜在故障和维护需求。 5. 生产自动化,提高生产效率和质量控制。 6. 销售和市场分析,理解客户需求制定策略和优化定价。 7. 电动化和能源管理,优化电池使用和充电策略。 8. 共享出行服务,优化路线规划、调度车辆和定价策略。 9. 语音助手和车载娱乐,通过语音控制车辆功能和获取信息。 10. 车辆远程监控和诊断,实时了解车辆状况并提供支持。
2025-01-14
利用布鲁姆分类法,规划我的AI学习路径
以下是利用布鲁姆分类法为您规划的 AI 学习路径: 1. 记忆: 先从 AI 的历史、基本术语、重要人物、方法和原理等开始了解。 查看入门课程。 2. 分析: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 应用: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-13
人工智能的分类
人工智能主要有以下分类和应用场景: 分类: 1. 按照智能水平: 弱人工智能(ANI):只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 通用人工智能(AGI):能做任何人类可以做的事。 AGI 的五个发展等级: 聊天机器人(Chatbots):具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 应用场景: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助做出投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐感兴趣的产品。 搜索和个性化:改善搜索结果和提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题和解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:提高生产效率。 5. 交通运输:(具体应用未详细说明)
2025-01-10