直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有没有语音交互领域的AI Agent的好的思路

回答

以下是关于语音交互领域的 AI Agent 的一些思路:

  1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。
  2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。
  3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。
  4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。
  5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。

此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI 数字人-定义数字世界中的你

有了数字人躯壳,我们就需要构建数字人的灵魂,让数字人具备各种智能,比如记得你的个人信息,充当你的个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。这些能力实现有以下几个需要注意的工程关键点:1.AI Agent:我们要想数字人像人一样思考就需要写一个像人一样的Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战;2.驱动躯壳的实现:灵魂部分怎样去驱动躯壳部分,我们可以将灵魂部分的所有接口定义出来,然后躯壳部分通过API调用,调用方式可以是HTTP、webSocket等等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考Nvidia的Audio2Face(https://www.nvidia.cn/omniverse/apps/audio2face/)或则Live Link Face(Iphone APP)+ Face AR Sample(UE);3.实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。4.多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉我们可以通过添加摄像头数据来获取数据,再通过系列CV算法做图像解析等;5.拟人化场景:我们正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景如何通过工程丝滑处理。

像高手一样编写 GPT:从基础到实践,学习使用 GPT 的 Action

1.复杂的数据处理、决策制定和问题解决能力2.快速的语音交互反应,高度的交互性看看另一个Agent,Agent Smith,来自《黑客帝国》的史密斯探员,能力大概有:1.抓人2.打人3.Ctrl+C,Ctrl+V,Ctrl+V,Ctrl+V,Ctrl+V,Ctrl+V,Ctrl+V,Ctrl+V,Ctrl+V,Ctrl+V……和能发射火箭能战斗的Jarvis相比——他只会出拳和开枪,所以我姑且认为他要弱一点。假如Jarvis代表了人类对未来Agent想象的一个高标准,那么他和GPT中间可能大概隔了n个Agent Smith,GPT和他们相比基本就是Baby:当然,这位Baby Agent也是有很多能力的。Lilian Weng()—— OpenAI的应用人工智能研究负责人,也是GPT-4的开发人员。她在个人博客的博文《大语言模型驱动的自动智能体(Agent)》提到了关于他们(OpenAI)构思中的Agent系统:“大型语言模型的潜力不仅仅在于创作出流畅的文本、故事、论文和程序;它还可以被视为一个强大的通用问题解决工具。”和开头提到的计算机领域的通用比,Lilian进一步具体化了Agent的能力模型:在Lilian看来,Agent的能力被具象为三大类:

【智谱AutoGLM】深度体验报告及原理分析

经过几天的深度测试,AutoGLM给我留下了深刻的印象。它让我看到了AI Agent真正落地的希望。还记得一年前,当我第一次尝试开发类似功能时,遇到的种种困境:API对接难、多模态识别差、操作不精准...这些问题让人觉得AI Agent离真正可用还很遥远。但AutoGLM用一种巧妙的方式解决了这些难题。它没有执着于传统的API集成路线,而是借助RPA的思路,通过模拟人类操作来实现跨应用的控制。这种方案虽然不完美,但确实让AI Agent从实验室走向了现实。在测试过程中,最让我惊喜的是它的场景理解能力。当我说"帮我买一杯咖啡"和"帮我买一包咖啡豆"时,它能准确地分别打开美团和淘宝。这不是简单的规则匹配能力可以实现的。它展现出了真正的智能理解能力,能够根据用户意图选择最合适的应用场景。当然,AutoGLM现在离好用还差很长的路。语音识别有时会出现偏差,复杂界面下的操作稳定性还需提升,只支持安卓也限制了不少用户。但这些都是可以通过技术迭代来解决的问题。重要的是,它已经证明了AI Agent落地是可行的。我特别欣赏智谱团队的产品思路。他们没有一上来就追求全能,而是选择了几个高频场景深耕细作。点外卖、写点评、看公众号,这些看似简单的日常操作,背后其实涉及复杂的技术难题。能把这些场景做好,已经足够证明产品的价值。展望未来,我觉得AutoGLM的发展空间还很大。随着多模态理解能力的提升,支持场景会越来越丰富;随着操作精准度的提高,用户体验会越来越自然。它的出现,或许会改变我们与手机交互的方式,就像当年第一款智能手机改变了我们的生活一样。

其他人在问
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
小白如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型及原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于多种学习方式。 生成式 AI 可生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
有没有带有文件夹功能的ai
目前,带有文件夹功能的 AI 仅在 Cursor Chat 中受支持。您还可以将 Cursor 中的整个文件夹作为上下文引用,@Folders 对于希望为 AI 提供大量上下文的长上下文聊天特别有用,相关链接为:https://docs.cursor.com/chat/overviewlongcontextchat 。 此外,能联网检索的 AI 也是存在的。例如,ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动;还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 Excel 方面,有以下几种增强数据处理和分析能力的 AI 工具和插件: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21
那如果想通过AI赚钱,有什么建议
以下是通过 AI 赚钱的一些建议: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业应用 AI 技能,增加就业机会和职业发展可能性。 2. 利用 AI 工具进行创作,例如使用以下工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。 3. 进行 Agent 应用开发,熟悉业务,结合 AI 能力打磨产品,形成自己的护城河。 4. 通过 Key 商、写书、卖课、接项目、做镜像站等方式赚钱。 需要注意的是,是否能通过 AI 赚钱取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-12-21
Agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2024-12-21
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 相关链接: 1. 2. 3. 4. 5. 6.
2024-12-17
基于知识库做备考AI Agent,我该怎么做
以下是基于知识库为您提供的备考 AI Agent 的建议: 首先,建议您先吃透 prompt,这对于学习 AI Agent 很重要。 在 cost 平台有丰富的教程和比赛,您可以参与其中。 了解到 AI agent 是大语言模型衍生出的智能体,用于解决大模型在处理复杂任务时存在的一些问题,如无法获取最新外部信息、缺少规划、没有记忆能力等。 明天银海老师将详细讲解 AI agent,您可以关注。 此外,知识库中还提到了一些相关的活动和内容,如 prompt battle、AI 神经大赛等,您可以根据自己的兴趣参与。 对于与 AI 会话相关的内容,您可以通过关键词学设进行学习,比如每日选词丢入稳定扩散模型,积累大量提示词,还建有飞书群供感兴趣的同学加入练习。 在 AI 绘画方面,是视觉基础,有针对 AI 绘画学社做的关键词词库精选活动。同时,还收集了 AI 视频类词汇和相关词典,更具象的描述词汇能让模型发挥更好效果。 希望以上内容对您备考 AI Agent 有所帮助。
2024-12-16
怎么做一个搜索ai新闻的agent
要做一个搜索 AI 新闻的 agent,您可以参考以下步骤: 1. 设定 Bot 的人设与回复逻辑。 2. 为 Bot 配置技能: 在 Bot 编排页面的技能区域,单击插件功能对应的“+”图标。 在添加插件页面,选择阅读新闻>头条新闻>getToutiaoNews,然后单击新增。 3. 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。 4. (可选)为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 测试您的 Bot:配置好 Bot 后,在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。 6. 发布您的 Bot: 在 Bot 的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-12
有什么着重于「交互」的人机交互的作品设计方案可以参考
目前暂时没有关于着重于“交互”的人机交互作品设计方案的相关内容可供参考。但一般来说,一个好的着重于交互的人机交互作品设计方案通常会考虑以下几个方面: 1. 明确用户需求和目标,深入了解用户群体的特点和行为习惯。 2. 设计直观简洁的界面,确保用户能够轻松理解和操作。 3. 提供及时有效的反馈机制,让用户清楚知道自己的操作结果。 4. 注重多模态交互,如结合语音、手势、触摸等多种交互方式。 5. 进行用户测试和迭代优化,不断改进交互体验。
2024-10-26
手机上可以语音交互的AI
以下是为您整理的关于手机上可以语音交互的 AI 的相关信息: 在 AR 交互方面,面向现实是 AR 眼镜跟手机的最大差异点。手机在视频娱乐、语音社交方面表现出色,操作简单,较少的现实应用如拍照翻译。现实物体繁多,难以预测下一步的指令操作,语音交互更适合长尾指令。当在现实中选定手机时,AI 会给出如手机型号、新旧程度、维修售后、购买价格、启动自拍、查看信息等下一步提示。语音交互虽操作成本高,但能对现实物体进行细颗粒的指令交互,可作为手机应用场景的补充,如车载交互、智能音箱那样限定特定应用场景。 此外,有由前苹果团队开发的可穿戴 AI 智能硬件,获得知名企业投资。其无需唤醒词,通过语音控制,内置投影仪和深度传感器投影交互界面,功能类似智能手机,完全由 AI 驱动。 希望以上信息对您有所帮助。
2024-10-16
有没有帮助产品经理设计产品原型和交互的AI应用
目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品经理设计产品原型和交互,以下是相关介绍: 1. UIzard:是一个利用 AI 技术生成用户界面的工具,可根据提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作,如自动生成设计元素。 以下是一些适用于产品经理的 AI 工具集: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com) 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-15
人机交互
人机交互方面的知识如下: 具身智能:是人工智能的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来展现智能。其核心在于智能体的“身体”或“形态”,涉及多个学科,在机器人、虚拟现实等领域有广泛应用,但仍面临诸多挑战。 AI 与人的协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 大模型在 B 端场景的交互模式:包括以人为主导,大模型提供建议(copilot 阶段);人和大模型协同工作(embedding 阶段);人指挥大模型工作(数字员工阶段)。当下应努力让大模型深度融入工作流,数字员工阶段尚不成熟。
2024-10-08
人机交互
人机交互方面的知识如下: 具身智能:是人工智能的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。其核心在于智能体的“身体”或“形态”,涉及多个学科,在机器人、虚拟现实等领域有广泛应用,但仍面临诸多挑战。 AI 与人的协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,不同模式下人与 AI 的协作流程有所差异。 大模型在 B 端场景的交互模式:包括以人为主导,大模型提供建议(copilot 阶段);人和大模型协同工作,合作完成同一个工作(embedding 阶段);人指挥大模型工作(数字员工阶段)。当下应努力让大模型深度融入工作流,数字员工阶段尚不成熟。
2024-10-08
OpenAI发布新交互界面Canvas
OpenAI 于 10 月 4 日发布了新交互界面 Canvas。该界面旨在提升用户在写作和编码方面的协作体验,允许用户实时编辑和反馈,提供自动化建议、代码审查和错误修复等功能,并且能根据任务复杂性自动启用,以提升交互质量与工作效率。 此外,OpenAI 于 10 月 2 日宣布完成 66 亿美元融资,估值达 1570 亿美元。此资金将加速其 AI 研究和计算能力的发展,服务超过 2.5 亿用户。近期,核心技术人员变动,研究副总裁 Barret Zoph 离职并计划创业,Mark Chen 接任首席研究官。 在技术方面,OpenAI 发布的 GPT4o 是之前所有技术的集大成者,是新的全模态模型。该模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似,能从数据中感悟到人类表达的情绪、语调、风格等,甚至能还原训练时的环境声音。但 OpenAI 并未公开 GPT4o 的技术细节,唯一线索来自其内部模型炼丹师的一篇博客,项目名是 AudioLM,于 2023 年中启动,目标是用端到端的方式扩大语音模型的能力。
2024-10-04
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。该项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API。 语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持 mp3、mp4、mpeg、mpga、m4a、wav 和 webm 等输入文件类型。 转录 API 的输入是音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可添加更多带有相关选项的form 行设置其他参数。 翻译 API 输入为任何支持语言的音频文件,输出为英文文本,目前仅支持英语翻译。 对于默认情况下 Whisper API 仅支持小于 25MB 的文件,若有更长音频文件,需分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 可以使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2024-12-20
语音对话哪个AI模型比较强?
以下是一些在语音对话方面表现较强的 AI 模型: 1. 智谱·AI 的 ChatGLM26B:这是第二代 ChatGLM 对话模型,相比一代模型性能更强,基座模型的上下文长度从 2k 扩展到 32k,在对话阶段使用 8K 的上下文长度训练,推理速度相比初代提升 42%。此外还有 ChatGLM26Bint4 这一 int4 量化版本,具备最小 5.1GB 显存即可运行,在 INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 2. Hertzdev 开源会话音频模型:具有实时对话、双向交流无需等待对方讲完,超低延迟(120 毫秒),高效压缩(占用带宽少、音质优秀、支持长对话生成)等特点。 在游戏中的语音对话方面,生成式 AI 对话使得角色可以说任何话,完全响应玩家正在做的事情。结合更智能的 NPC AI 模型,完全对玩家作出反应的游戏将很快成为现实。例如,使用与玩家的虚拟形象匹配的生成声音可以维持角色扮演的幻觉,还可以控制声音的细微差别,以及实现对话的本地化。像 Deepdub 这样的公司专注于这个特定的领域。
2024-12-19
语音理解哪个AI模型比较好?
以下是一些在语音理解方面表现较好的 AI 模型: 1. Fish Agent V0.1 3B 语音处理模型: 支持多语言 TTS,包括英语、中文、德语、日语、法语、西班牙语、韩语、阿拉伯语等。 采用端到端架构,支持即时语音克隆与文本到语音转换。 具有超快响应,能在 200 毫秒内完成文本到音频转换。 详细介绍: 演示地址: 2. 腾讯混元大模型(HunyuanLarge): 是全球最大 MoE 开源模型,拥有 3890 亿参数,活跃参数 520 亿。 具备强长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-12-19
国内那种会议记录语音转文字的免费AI产品好用
国内有以下免费的会议记录语音转文字的工具,不过大部分有使用时间限制,超过免费时间可能需要付费: 1. 飞书妙记:飞书的办公套件之一,网址为 https://www.feishu.cn/product/minutes 。 2. 通义听悟:阿里推出的 AI 会议转录工具,网址为 https://tingwu.aliyun.com/home 。 3. 讯飞听见:讯飞旗下智慧办公服务平台,网址为 https://www.iflyrec.com/ 。 4. Otter AI:转录采访和会议纪要。 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。 内容由 AI 大模型生成,请仔细甄别。
2024-12-19
语音转文字软件工具推荐
以下是为您推荐的语音转文字软件工具: 免费的会议语音转文字工具: 飞书妙记:https://www.feishu.cn/product/minutes ,是飞书的办公套件之一。 通义听悟:https://tingwu.aliyun.com/home ,阿里推出的 AI 会议转录工具。 讯飞听见:https://www.iflyrec.com/ ,讯飞旗下智慧办公服务平台。 Otter AI:https://otter.ai/ ,用于转录采访和会议纪要。 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 语音转文字推荐 OpenAI 的 wishper: https://huggingface.co/openai/whisperlargev2 https://huggingface.co/spaces/sanchitgandhi/whisperjax ,这个项目在 JAX 上运行,后端支持 TPU v48。与 A100 GPU 上的 PyTorch 相比,它要快 70 多倍,是目前最快的 Whisper API。 此外,关于在线 TTS 工具: Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。 Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-15
语音转文字软件
以下是关于语音转文字软件的相关信息: OpenAI 的 wishper 可用于语音转文字,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,此项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。 免费的会议语音转文字工具通常有使用时间限制,超过免费时间可能需要付费。以下为几款推荐工具: 飞书妙记:https://www.feishu.cn/product/minutes ,是飞书的办公套件之一。 通义听悟:https://tingwu.aliyun.com/home ,阿里推出的 AI 会议转录工具。 讯飞听见:https://www.iflyrec.com/ ,讯飞旗下智慧办公服务平台。 Otter AI:https://otter.ai/ ,用于转录采访和会议纪要。 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。 语音转文本(Speech to text)支持的语言包括:南非荷兰语、阿拉伯语、亚美尼亚语、阿塞拜疆语、白俄罗斯语、波斯尼亚文、保加利亚文、加泰罗尼亚文、中文、克罗地亚文、捷克文、丹麦文、荷兰文、英国英语、爱沙尼亚文、芬兰文、法国法式英语、加利西亞語、德國語、希臘語、希伯來語、印地語、匈牙利語、冰岛语、印度尼西雅、意大利语、日本语、卡纳达语、哈萨克语、韩国语、拉脫維语、立陶宛语、马其顿语、马来语、馬拉地语、毛里求斯语、尼泊尔语、挪威语、波斯语、波蘇尼语、塔加洛语、坦米爾语、泰语、土耳其语、烏克兰语、烏尔都语。
2024-12-15