Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何减少 大模型的幻觉

Answer

减少大模型幻觉的方法主要有以下几点:

  1. 使用 Prompt:在与大模型交互时,Prompt 是一套语言模板。它能为大模型提供更多的输入、限定、上下文和更明确的结果输出要求,帮助大模型更好地理解用户问题,从而减少随意发挥导致的幻觉问题。
  2. 上采样(Up Sampling):针对“Imitative Falsehoods”,即样本存在错误的情况,上采样可以作为一种缓解办法。
  3. 注意数据隐私保护:减少模型见数据的次数,例如避免模型过多重复接触某些数据,以降低记忆隐私泄露的风险,这在一定程度上也有助于减少幻觉问题。

大模型出现幻觉的原因包括:

  1. 样本存在错误:如果大模型学习的“教材”中有错误,其输出也可能出错。
  2. 信息过时:存在以前正确但现在过时的信息。

此外,大语言模型偶尔会根据输入输出荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都有待改进。

Content generated by AI large model, please carefully verify (powered by aily)

References

从原理到应用一次讲清楚 Prompt

原创小宝聊AI小宝聊AI 2024-01-30 00:12发表于浙江小宝聊AI十年大厂架构师,专注于大模型技术和应用29篇原创内容公众号本文长度5000字阅读时长预计需要20分钟本文目录一、什么是Prompt二、用更加专业的方式定义Prompt三、用数学来理解Prompt四、NLP发展的四大范式五、为什么Prompt可以减少幻觉六、Open AI()提供的最佳实践七、可以直接使用Prompt的关键框架八、为什么使用框架的效果好[heading2]1、什么是Prompt[content]简单来说,其实是一套你和大模型交互的一种语言模板。通过这个模版,你可以输出你对于大模型响应的指令,用于大模型应该具体做什么指定,完成什么任务,如何处理具体的任务,并最终输出你期望的结果。虽然大模型具有基础的文字能力,能够理解你对于模型说的大部分话,但是为了达成大模型更好的回答效果,需要通过Prompt,来提升模型返回的准确性。如果说,过去的时代,人机交互的主要方式是通过代码,那么我认为在大模型时代,交互语言的主要方式其实是Prompt。[heading2]2、用更加专业的方式定义[content]Prompt大模型的本质是一个基于语言的概率模型,他返回他觉得概率最大的内容。如果是直接问大模型,没有提供Prompt,相当于大模型随机给出他的答案。有了Prompt,其实是给了一个模板,这个模板包括了对于模型的要求,输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。

从 0 到 1 了解大模型安全,看这篇就够了

隐私泄露可以被大致分为三种:记忆隐私泄露,系统隐私泄露与上下文隐私泄露。我们先来聊聊第一种:记忆数据了、泄露。自回归语言模型的训练可以类比为模型在预训练数据中不断学习的过程,在学习的过程中,除了提取的`语言知识之外,模型无可避免的会记住一些数据。就像背诵一样,可能查询是完全没有恶意的,但模型返回了他人的隐私信息,例如左侧的ChatGPT回答,就正是模型输出了无意识记忆的url,而该url正好指向他人的隐私相册。模型的记忆形式其实和人类很类似,如果模型背诵的次数少,那么模型的记忆能力就会显著下降例如右图所示,横轴是重复次数,纵轴是被记住的可能性,可以看到见过的次数越多,模型就越容易背下来因此在LLM的数据隐私保护中,一个直观地解决办法就是让模型减少见数据的次数,少看几遍,也就记不住了第二种则是系统隐私泄露。例如,大家熟知的“骗取GPTs的System Prompt”就是系统隐私泄漏的一种。第三种则是“上下文隐私泄露”。接下来,我们来讲讲大家耳熟能详的“幻觉”问题。大语言模型偶尔会根据输入,输出一些荒谬或不符合事实的内容。目前,各家大语言模型都在该问题上表现得不尽如人意。为什么大语言模型会出现幻觉呢?以下的论文提供了一些解释:例如第一种:Imitative Falsehoods,样本存在错误。如果大语言模型这个“学生”学习的“教材”中有错误,那它也对不到哪里去。缓解该问题的一个办法是上采样(Up Sampling)。第二种是Outdated Factual Knowledge:以前正确,现在过时了的信息

从原理到应用一次讲清楚 Prompt

在刚刚开始使用ChatGPT()的时候,其实我们只是会把这个对话框理解问题的输入框。或者我们天然的认为这个是一个搜索框,所以就自动的输入了我们的问题。这个时候,大模型完全没有上下文,也没有任何例子可以去参考,所以他只能按照自己的模型的内容,随意的去发挥,看看碰到模型的那一部分,就返回对应的结果。这个就是大模型最被人诟病的地方,所谓的幻觉问题。其实这个不能怪大模型,就算两个人,面对面的沟通,可能由于知识、经历的差别,其实不可能完全的去理解另外一个的意思,何况这只是一个模型。所以,为了让大模型更好的理解我们的问题,我们需要给大模型更多的输入,更多的限定,更多的上下文,更加明确的结果输出,这样大模型才更有可能返回我们期望的结果。Prompt其实也就是用这个思路解决问题的,限定的上下文,更多的输入,更多的限定,从而输出得到更好的结果。

Others are asking
c端的用户如何应对AI幻觉
对于 C 端用户应对 AI 幻觉,可以参考以下方法: 1. 在商业化问答场景中,落地时需直面幻觉问题。非技术从业者可从配置入手,如问答机器人界面左侧的 AI 模型、提示词、知识库等。 2. 对于 Claude ,可以尝试以下故障排除方法: 允许 Claude 在不知道答案时说“我不知道”。 告诉 Claude 只有在非常确信回答正确时才回答问题。 让 Claude 在回答问题之前“逐步思考 think step by step”。 给 Claude 留出思考的空间,例如让其在<thinking></thinking>标签内思考,然后从最终输出中删除该部分。 让 Claude 在长篇文档中找到相关引文,然后使用这些引用来回答。 3. 对于提示词污染与不良用户行为,Claude 本身具有一定抵抗力,为实现最大程度保护,可以进行无害性筛选,例如运行“无害性筛选”查询评估用户输入内容是否恰当,若检测到有害提示则拦截查询响应。 4. 在实际应用中,如面对央企等对幻觉零容忍的大客户,可引入 LLM 之外的东西如传统搜索或 hard code 的一些东西去强行控制,但希望流程能在场内完成,同时与客户建立共生的数据。
2025-02-16
大语言模型幻觉的本质是什么
大语言模型幻觉的本质主要包括以下方面: 1. 大语言模型的底层原理是基于数学概率的文字预测,类似于文字接龙,这导致其存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。 2. 样本存在错误,即如果大语言模型学习的“教材”中有错误,那么它也容易给出错误的回答。 3. 大语言模型技术的本质导致其输出结果具有不可预测性,且静态的训练数据导致其掌握的知识存在截止日期,无法即时掌握最新信息。 4. 大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。
2025-02-16
幻觉
幻觉是人工智能领域中大型语言模型(LLM)存在的一个问题,主要表现为以下几个方面: 1. 与内部知识不一致的反应以及分享与既定外部知识不一致的信息,例如产生不正确的概括。 2. 在处理特定领域或高度专业化的查询时,容易出现错误信息,尤其当查询超出模型训练数据或需要最新信息时。 3. 模型本质上是模仿训练数据中的统计模式,而非真正理解或检索知识,导致会编造事实性信息。 4. 模型在训练数据中学习到某些问题通常有确定答案,因此面对未知问题会倾向于编造答案以符合训练风格。 针对幻觉问题,目前有以下一些研究和应对措施: 1. 牛津大学通过生成问题的多个答案,并使用另一个模型分组来衡量 LLM 不确定性。 2. Google DeepMind 推出 SAFE,将 LLM 响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估响应真实性。 3. OpenAI 推出 CriticGPT 来发现其他 LLM 生成代码中的错误。 4. Cohere 探索使用 LLM 生成的评论增强 RLHF 的奖励模型。 5. 检索增强生成(RAG)将外部数据检索整合到生成过程中,提高模型提供准确和相关回答的能力,解决生成事实错误内容的问题。 6. 采取缓解幻觉的方法,如知识边界检测、拒绝回答机制、允许模型使用外部工具检索信息等。
2025-02-15
如何更好的使用知识库,我在知识库中增加了很多文档,但是反而感觉导致AI产生大量幻觉和混乱
以下是关于如何更好使用知识库以及 RAG 相关的知识: RAG 技术是 AI 领域的重要技术,但存在一些常见误区: 不能随意输入任何文档就期望得到准确回答,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,且有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等。 RAG 虽然能显著减少幻觉,但不能完全消除,只要有大模型参与,就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终还是将知识库中检索的结果给到 LLM,由 LLM 进行重新整理输出。 对于使用知识库的建议: 知识库在不断更新,常来逛逛。 遇到问题先搜索,搜不到就提问。 好用的内容要收藏,方便下次查找。 每个人都有自己的节奏,不要着急。 一旦有了自己的方向和持续玩的 AI 角度,知识库中的大量高质量教程就是最好的助力。 当成为高手并愿意分享时,为社区留下内容。 开源知识库和社区的意义在于共建、共学、互相帮助。 不要怕犯错,大胆尝试。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,能提供详细准确的回答。
2025-02-11
到今天,大语言模型还会产生“幻觉”吗
截至今天,大语言模型仍会产生“幻觉”。 大语言模型偶尔会根据输入输出一些荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都不尽如人意。产生“幻觉”的原因包括: 1. 样本存在错误(Imitative Falsehoods):如果大语言模型学习的“教材”中有错误,它也容易给出错误回答。缓解该问题的一个办法是上采样(Up Sampling)。 2. 信息过时(Outdated Factual Knowledge):以前正确的信息现在可能过时了。 此外,大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。如果在其训练过程中,模型被暴露于大量知识之中,它并没有完美地记忆所见到的信息,并不十分清楚自己的知识边界,可能会尝试回答有关深奥话题的问题,并虚构听起来有道理但实际不正确的内容。 在构建应用程序时,可以使用一些技术来避免这种情况,例如要求模型先从文本中找到相关引文,然后使用引文回答问题,并将答案追溯回源文件,这通常有助于减少“幻觉”的发生。
2025-01-22
如何解决agent幻觉问题
在大型语言模型(LLM)中,幻觉通常指模型生成不忠实、捏造、不一致或无意义的内容。幻觉主要分为两种类型: 1. 上下文内幻觉:模型输出应与上下文中的源内容一致。 2. 外部幻觉:模型输出应基于预训练数据集,与预训练数据中的知识相符。由于预训练数据集规模庞大,每次生成都去检索和识别冲突成本太高。若将预训练数据语料库视为世界知识的代表,应努力确保模型输出是事实的,且在不知答案时明确表示。 为避免幻觉,LLM 需做到: 1. 输出符合事实的内容。 2. 适用时承认不知道答案。 在 LLM 驱动的自主 Agents 中,启发式函数可决定轨迹是否低效或包含幻觉。低效规划指花费过长时间未成功的轨迹,幻觉指遇到一系列连续相同动作导致环境中出现相同观察。自我反思可通过向 LLM 展示示例创建,并添加到 Agents 的工作记忆中。在 AlfWorld 中,幻觉比低效规划更常见。 对于处理 ChatGPT 的“幻觉”,有以下经验: 1. 明确告诉它想要准确答案,无幻觉。 2. 改变 temperature 参数(如改到 0)或控制创造力水平。 3. 得到答案后,要求它为每个引用产生精确的引用和页面,以便交叉检查。
2025-01-22
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
在使用openai api的时候,同一轮对话,需要每次都传system prompt吗?可以利用什么session id来减少system prompt的显示调用吗
在使用 OpenAI API 进行同一轮对话时,系统提示的使用并非每次都必须传递。系统提示在对话中类似于一个过滤器,大语言模型在回应新提示前会自动应用。一般来说,系统提示包括任务定义、输出格式和操作边界等部分,以确保大语言模型清楚任务、按要求格式化回答以及明确不应采取的行为。 另外,OpenAI 还推出了 Stateful API,开发者只需传入最新的对话记录,大模型会结合该记录和其维护的历史记录依据上下文产生新内容。Stateful API 的实现机制类似于 KV Cache,能指数级降低大模型应用的开销,提升计算速度。例如,在不使用 cache 的情况下,使用 GPT2 生成 1000 个 Token 将耗时 56 秒,而使用 cache 的耗时则被降低为 11 秒。可以预期 Stateful API 会采用类似于 KV Cache 的机制,缓存用户对话的历史记录,并在每次 API 调用中,使用增量信息结合服务端的历史记录生成文本,以此降低计算规模。 但关于是否可以利用 session id 来减少系统提示的显示调用,目前提供的知识库中未提及相关内容。
2024-12-11