减少大模型幻觉的方法主要有以下几点:
大模型出现幻觉的原因包括:
此外,大语言模型偶尔会根据输入输出荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都有待改进。
原创小宝聊AI小宝聊AI 2024-01-30 00:12发表于浙江小宝聊AI十年大厂架构师,专注于大模型技术和应用29篇原创内容公众号本文长度5000字阅读时长预计需要20分钟本文目录一、什么是Prompt二、用更加专业的方式定义Prompt三、用数学来理解Prompt四、NLP发展的四大范式五、为什么Prompt可以减少幻觉六、Open AI()提供的最佳实践七、可以直接使用Prompt的关键框架八、为什么使用框架的效果好[heading2]1、什么是Prompt[content]简单来说,其实是一套你和大模型交互的一种语言模板。通过这个模版,你可以输出你对于大模型响应的指令,用于大模型应该具体做什么指定,完成什么任务,如何处理具体的任务,并最终输出你期望的结果。虽然大模型具有基础的文字能力,能够理解你对于模型说的大部分话,但是为了达成大模型更好的回答效果,需要通过Prompt,来提升模型返回的准确性。如果说,过去的时代,人机交互的主要方式是通过代码,那么我认为在大模型时代,交互语言的主要方式其实是Prompt。[heading2]2、用更加专业的方式定义[content]Prompt大模型的本质是一个基于语言的概率模型,他返回他觉得概率最大的内容。如果是直接问大模型,没有提供Prompt,相当于大模型随机给出他的答案。有了Prompt,其实是给了一个模板,这个模板包括了对于模型的要求,输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。
隐私泄露可以被大致分为三种:记忆隐私泄露,系统隐私泄露与上下文隐私泄露。我们先来聊聊第一种:记忆数据了、泄露。自回归语言模型的训练可以类比为模型在预训练数据中不断学习的过程,在学习的过程中,除了提取的`语言知识之外,模型无可避免的会记住一些数据。就像背诵一样,可能查询是完全没有恶意的,但模型返回了他人的隐私信息,例如左侧的ChatGPT回答,就正是模型输出了无意识记忆的url,而该url正好指向他人的隐私相册。模型的记忆形式其实和人类很类似,如果模型背诵的次数少,那么模型的记忆能力就会显著下降例如右图所示,横轴是重复次数,纵轴是被记住的可能性,可以看到见过的次数越多,模型就越容易背下来因此在LLM的数据隐私保护中,一个直观地解决办法就是让模型减少见数据的次数,少看几遍,也就记不住了第二种则是系统隐私泄露。例如,大家熟知的“骗取GPTs的System Prompt”就是系统隐私泄漏的一种。第三种则是“上下文隐私泄露”。接下来,我们来讲讲大家耳熟能详的“幻觉”问题。大语言模型偶尔会根据输入,输出一些荒谬或不符合事实的内容。目前,各家大语言模型都在该问题上表现得不尽如人意。为什么大语言模型会出现幻觉呢?以下的论文提供了一些解释:例如第一种:Imitative Falsehoods,样本存在错误。如果大语言模型这个“学生”学习的“教材”中有错误,那它也对不到哪里去。缓解该问题的一个办法是上采样(Up Sampling)。第二种是Outdated Factual Knowledge:以前正确,现在过时了的信息
在刚刚开始使用ChatGPT()的时候,其实我们只是会把这个对话框理解问题的输入框。或者我们天然的认为这个是一个搜索框,所以就自动的输入了我们的问题。这个时候,大模型完全没有上下文,也没有任何例子可以去参考,所以他只能按照自己的模型的内容,随意的去发挥,看看碰到模型的那一部分,就返回对应的结果。这个就是大模型最被人诟病的地方,所谓的幻觉问题。其实这个不能怪大模型,就算两个人,面对面的沟通,可能由于知识、经历的差别,其实不可能完全的去理解另外一个的意思,何况这只是一个模型。所以,为了让大模型更好的理解我们的问题,我们需要给大模型更多的输入,更多的限定,更多的上下文,更加明确的结果输出,这样大模型才更有可能返回我们期望的结果。Prompt其实也就是用这个思路解决问题的,限定的上下文,更多的输入,更多的限定,从而输出得到更好的结果。