直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何学习AI的基础到高深的用法

回答

以下是从基础到高深学习 AI 用法的建议:

基础阶段

  1. 了解 AI 基本概念:阅读「从这里启程」,熟悉 AI 术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们的联系。同时,浏览入门文章,了解 AI 的历史、应用和发展趋势。
  2. 开始 AI 学习之旅:在「入门:AI 学习路径」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。

深入阶段

  1. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块。掌握提示词技巧,因其上手容易且实用。
  2. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品创作作品,知识库中有相关作品和文章分享,欢迎实践后分享。
  3. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。

精进阶段(针对不会代码但希望深入的情况)

  1. Python 基础:
    • 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。
    • 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。
    • 控制流:学习使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。
    • 函数:包括定义和调用函数,理解参数和返回值,以及作用域和命名空间。
    • 模块和包:学会导入模块,使用包扩展程序功能。
    • 面向对象编程(OOP):了解类和对象的定义与实例化,以及属性和方法,还有继承和多态。
    • 异常处理:理解异常及其工作原理,学会使用 try 和 except 语句处理错误。
    • 文件操作:掌握文件读写,处理文件与路径。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。

写给不会代码的你:20分钟上手 Python + AI

在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。

其他人在问
年终汇报及活动方案最好用的ai
以下是为您提供的一些关于年终汇报及活动方案的 AI 相关信息: 在智能纪要方面,有多种相关技术和活动,如 AI 音乐创作,通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区;数字人语音合成,介绍了声音克隆技术及微软、阿里等的成果,常用 JPT service;config UI 的应用能降低成本、提高效率,在图书出版、引流等方面有应用,社区有相关共学课程。 社区共创项目丰富,包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动,会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战,如 10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升,接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人部分材料需尽快购买。 在自媒体发布与流量扶持方面,在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法,设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告,可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 同时,为您提供一些会议总结相关的 AI 工具: 但目前没有直接针对年终汇报及活动方案最好用的 AI 的明确推荐。
2024-11-14
天工AI有哪些使用场景
天工 AI 的使用场景较为广泛,包括但不限于以下方面: 搜索领域:采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 数字内容创作:为艺术家和创作者提供高效、创新的方法来生成相关内容。 游戏开发和动画制作:能够快速、高质量地创建 3D 模型。 教育和培训:利用 3D 内容提供更具吸引力和互动性的学习体验。 医疗行业:为诊断、治疗规划和患者教育提供精确的 3D 模型支持。 建筑和工程:用于设计、可视化和项目规划中的 3D 模型创建。
2024-11-14
即梦AI的主要功能
即梦 AI 是一款强大的视频生成工具,具有以下主要功能: 1. 视频生成:可根据用户提供的图片(首帧/首尾帧)、prompt(文字指令)和各种参数设置生成高质量、稳定且高动态的视频。 2. 生成时长: 全面提升单次生成时长,并提供标准模式和流畅模式两种选择。 标准模式适用于通用场景,支持时长有 3s、6s、9s、12s。 流畅模式适用于运动强度高的场景,如赛车飞驰,支持时长有 4s、6s、8s。 视频延长:全面提升延长效果,可基于选择的模式选择二次生成的时长,并支持 prompt 控制,同一个素材支持两次延长。 3. 可控性: 首尾帧权重超强优化,输入 prompt 可精准控制过渡效果。 运镜控制:新增移镜、摇镜,并支持三档运镜幅度设定。 4. 智能画布:提供多种创意案例,如 LOGO 玩法等。 优点: 动效方面采取激进策略,在需要很强动效表现时可考虑使用。 对画面识别非常准确。 在人物微表情、汽车行驶等画面的表现出色。 具有首尾帧相连的功能。 对于简单画面有不错的表现力,能让主体完成超出预期的流畅动效,尤其是简单的三维物体。 人物的面部特写表现惊艳。 缺点: 精度不太够,后期需要用到 topaz video 等超分工具再放大。 丰富的动效带来画面容易“出轨”的问题,导致画面稳定性不足。 为了更丰富的动效,视频的输出存在掉帧等问题。 运动幅度不能开得太过,否则会有用力过猛的感觉,且画面容易崩塌。 总体 3 6s 的生成长度一般。 即梦 AI 官网:https://jimeng.jianying.com/
2024-11-14
AI 网站哪一个写文章好
以下是一些在写文章方面表现较好的 AI 网站和工具: 1. 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常选 Latex 和 Overleaf,一般文章和商业文档可选 Grammarly 和 PandaDoc 等。 2. 辅助写邮件的 AI 工具: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多平台和集成。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 3. 利用 AI 打造爆款公众号文章: 关键在于提供清晰且具有指导性的提示词(prompt)。好的提示词能让 AI 更准确理解需求并生成符合预期的内容。如“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导和设定文章基本结构、内容要求。最终产出的内容可能需要微调以符合预期和公众号风格。
2024-11-14
如何系统性的学习如何使用ai
以下是关于如何系统性学习使用 AI 的建议: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习,比如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,以及学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,比如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2024-11-14
怎么学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-14
如要学习使用AI,主要的用法是输入文字生成图片,再进一步生成中短视频,应该使用哪些工具,如何进行?
如果您想学习使用 AI 输入文字生成图片,再进一步生成中短视频,可以使用以下工具和按照以下步骤进行: 工具: 1. ChatGPT(https://chat.openai.com/)+ 剪映(https://www.capcut.cn/):ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频所需场景、角色、镜头等要素,并生成对应素材和文本框架,实现从文字到画面的快速转化。 2. PixVerse AI(https://pixverse.ai/):在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory(https://pictory.ai/):AI 视频生成器,用户提供文本描述即可生成相应视频内容,无需视频编辑或设计经验。 4. VEED.IO(https://www.veed.io/):提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划视频内容。 5. Runway(https://runwayml.com/):能将文本转化为风格化的视频内容,适用于多种应用场景。 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-09-18
runway视频转绘用法
以下是关于 runway 视频转绘的用法: 转绘教程(Ebsynth Utility): 选择前面模糊的片段,点击 DELETE 键或退格键删除。处理完视频后,点击右上角的导出按钮导出新视频,注意导出名称最好使用英文。 注意事项: 校准:有时下载的视频可能不是标准比例,需用剪影处理。若不处理,由于 SD 图片绘制分辨率按 8 的倍数增加,即使绘制时按原视频分辨率,最后视频合成仍可能报错,一定要检查。 视频缩小:老板给的 4K 视频,SD 最大只能完成 20482048 的绘制,往上无法完成且制作时间大幅上升。 分辨率模糊的视频:若客户要求强烈,可先提升分辨率(推荐使用 TopazVideoAI 插件),不行则放弃。 图片生成视频: 进入 runway 官网首页,点击 start with image,然后直接将图片拖进来。 动画幅度尽量用 3、5,有时会乱跑。 不需要等进度条转完,可以直接继续往里放图片,可同步执行。 直接点删除,然后重新上传下面的图即可(最多可放数量可自行测试)。 图生视频(常规方法): 以汽车内饰片段为例,登录 runway 账户后,在首页左侧点击“Text/Imagine to Video”(文生视频/图生视频)。 点击 2 处将汽车内饰的图片上传到 runway 中。 1 处可更改生成图片所用到的大模型版本,数字越大代表模型越强,目前只有 Gen2 每天有免费额度。 3 处用于输入提示词。 4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。 5 处可以看到生成的结果。 提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”,即摄像机围绕垂直轴顺时针旋转。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词可参照: 。 很多时候提示词过多,生成的视频会很怪异,改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。
2024-09-16
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得实际应用中的第一手体验。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了 AI 大模型的概念和原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可生成文本、图片、音频、视频等。 LLM 是大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-11-14
小白学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以通过以下方式加深对 AI 技术原理的理解: 1. 观看相关视频,了解如什么是 AI 大模型及其原理。 2. 学习相关技术名词和概念关系: 生成式 AI 生成的内容叫 AIGC。 机器学习包括监督学习、无监督学习、强化学习。 监督学习有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。 3. 了解技术里程碑,如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出的 Transformer 模型。
2024-11-14
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
哪里可以学习AI
以下是为您提供的新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-14