直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI的起源

回答

AI(人工智能)的起源最早可以追溯到上世纪。

1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。

1945 年,Alan Turing 考虑用计算机来模拟人脑,设计了 ACE 来模拟大脑工作。

1950 年,伟大的计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么就说房间里的机器具备了智能,通过了图灵测试。

1956 年,在美国的达特茅斯学院,马文·明斯基和约翰·麦凯西在香农的支持下,共同发起召开了著名的达特茅斯会议,在这次会议上,“人工智能(Artificial Intelligence)”一词被正式提出,并作为一门学科被确立下来。

最初,查尔斯·巴贝奇发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像从照片判断人的年龄这类任务,我们无法明确解法,也难以编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

走入AI的世界

2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

早在1945年,Alan Turing就已经在考虑如何用计算机来模拟人脑了。他设计了ACE(Automatic Computing Engine -自动计算引擎)来模拟大脑工作。在给一位同事的信中写道:"与计算的实际应用相比,我对制作大脑运作的模型可能更感兴趣......尽管大脑运作机制是通过轴突和树突的生长来计算的复杂神经元回路,但我们还是可以在ACE中制作一个模型,允许这种可能性的存在,ACE的实际构造并没有改变,它只是记住了数据......"这就是机器智能的起源,至少那时在英国都这样定义。

人工智能简介和历史

译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

其他人在问
ai怎么挣钱
以下是关于“AI 怎么挣钱”的相关内容: 从 GPTs/GLMs 如何赚钱谈起: 不管 GPTs 还是 GLMs 的上线,民间讨论最多的是能否赚钱及怎么赚钱。但答案可能让大多数人失望,能赚钱,但大多数人不能。 以一个 AI 产品经理的角色复盘 2023 年的所见所闻所感来聊 AI 赚钱(应用落地)这件事。 关于 Token 计费: 听说 AI 按 Token 算钱,用起来很费 Token,存在双向收费,如问问题和回答都收费。 Token 类似积木,通过搭建积木来完成应用,在企业环境中,了解 Token 有助于更好理解 AI 在企业中落地。 关于 AI 赚钱的其他问题: 大型语言模型主要基于语言理解和生成,不是专门设计进行数学计算,所以有时会算错小学数学题。 学了 AI 有可能赚钱,人工智能领域有高薪工作,掌握 AI 技能可增加就业机会,但能否赚钱还取决于个人学习能力、实际应用能力、对市场和商业的理解等,持续学习和实践很重要。 总之,AI 赚钱并非简单直接,需要综合多方面因素考虑。
2024-11-14
比较好用的项目管理的能生成项目进度甘特图的可以免费使用的AI软件有哪些
以下是一些可以免费使用且能生成项目进度甘特图的 AI 软件: 1. 项目管理和任务跟踪工具: Jira:已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度等。 Trello:能辅助项目管理。 2. 文档和协作工具: 微软的 Copilot:可集成到 Office 套件中,为项目文档撰写、编辑等提供助手功能。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 创意生成工具: 文心一格、Vega AI 等:可帮助快速生成创意图像素材。 此外,在绘制逻辑视图、功能视图、部署视图方面,以下工具可供选择: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源的建模语言,与 Archi 工具一起使用可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,支持多种类型图表创建。 7. PlantUML:文本到 UML 的转换工具,可通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。 如果您需要创建项目管理流程图,可按以下步骤使用 Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,您可以快速、高效地创建专业的示意图,满足各种工作和项目需求。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得实际应用中的第一手体验。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了 AI 大模型的概念和原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可生成文本、图片、音频、视频等。 LLM 是大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-11-14
ai如何赋能在装修行业
AI 在装修行业的赋能主要体现在以下方面: AI 房地产装修设计平台:例如酷家乐装修设计软件,利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据自身喜好进行选择和调整。 目前大多数的“AI 应用/AI 转型”在装修等行业还存在一些问题,很多还在走“数字化转型”的老路,把 AI 往现有流程上套用,讲“固化流程”“节约成本”的故事。但在技术加速迭代的当下,这样做可能导致“做出来就是过时的”,限制企业的主动进化能力。我们应从“AI 能创造和满足装修行业的什么新需求”出发,重新定义未来业务模式。
2024-11-14
小白学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以通过以下方式加深对 AI 技术原理的理解: 1. 观看相关视频,了解如什么是 AI 大模型及其原理。 2. 学习相关技术名词和概念关系: 生成式 AI 生成的内容叫 AIGC。 机器学习包括监督学习、无监督学习、强化学习。 监督学习有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。 3. 了解技术里程碑,如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出的 Transformer 模型。
2024-11-14
AI在企业战略方面有哪些应用场景?
AI 在企业战略方面的应用场景主要包括以下几个方面: 1. 构建负责任的 AI 战略: 制定企业 AI 战略时,需在提高效率、促进创新的同时规避潜在风险。企业可通过优化实际操作流程,满足市场需求并保持长远发展。 2. 明确 AI 的适用范围: 并非所有决策都需由 AI 完成,在复杂决策场景中,AI 更适合作为辅助工具。 常见适用场景包括: 数据密集型工作,如市场分析、客户画像、生产优化等,能提升效率、降低人力成本。 重复性任务,在自动化流程、预测维护等方面表现出色,可降低人为错误。 有限范围内的创新,能基于已有数据提供初步创新建议,但跨领域创新、产品设计等仍由人类主导。 实操提示:企业管理层可引入内部评估机制,每季度评估 AI 在不同业务线中的表现,并设定不同使用权限。AI 可部署在低风险、可标准化的任务上,涉及品牌形象、用户隐私、产品战略的决策由人类主导。 3. 数据驱动决策: 利用 AI 工具分析大量客户和市场数据,为决策提供有力支持。 为营销、产品开发等部门提供基于数据的建议和指导,将分析结果转化为实际业务策略,与相关部门紧密合作,持续监控效果并收集数据,形成闭环不断优化。 通过以上应用,企业能够将数据转化为商业价值,更精准定位市场和客户,优化产品和服务,在竞争中获得优势,做出更明智的决策并适应市场变化。
2024-11-14