Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI入门

Answer

以下是为您提供的 AI 入门指导:

一、背景

在深入学习 AI 时,编程是常见需求,但很多教程默认会打命令行,导致入门困难。因此有了简明入门教程,帮助您更快掌握 Python 和 AI 的相互调用。

二、关于 Python

Python 就像哆啦 A 梦的百宝袋,拥有标准库,可直接使用。若不够用,还能通过 pip 工具从 GitHub 等平台订购新道具。Python 在 AI 领域被广泛使用。

三、关于 OpenAI API

OpenAI 通过两种方式提供服务:

  1. 通过 ChatGPT 提供开箱即用的服务,直接对话即可。
  2. 通过 OpenAI API 提供更灵活的服务,通过代码调用完成更多自动化任务。

四、学习方法

  1. 了解 AI 基本概念

    • 阅读「从这里启程」,熟悉术语和基础概念,了解人工智能的主要分支及联系。
    • 浏览入门文章,了解历史、应用和发展趋势。
  2. 开始学习之旅

    • 在「入门:AI 学习路径」中找到初学者课程,推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。
  3. 选择感兴趣的模块深入学习

    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,一定要掌握提示词技巧。
  4. 实践和尝试

    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 知识库有很多实践后的作品和文章分享。
  5. 体验 AI 产品

    • 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。

在接下来的 20 分钟内,您可以循序渐进地完成以下任务:

  1. 完成一个简单程序。
  2. 完成一个爬虫应用,抓取公众号文章。
  3. 完成一个 AI 应用,为公众号文章生成概述。
Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

在深入学习AI时,许多朋友发现需要编程,变得头大。同时,各类教程都默认了你会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握Python和AI的相互调用。并使你在接下来的20分钟内,循序渐进的完成以下任务:完成一个简单程序完成一个爬虫应用,抓取公众号文章完成一个AI应用,为公众号文章生成概述[heading2]一些背景[content]知己知彼,百战不殆[heading3]关于Python[content]Python就像哆拉A梦,它:拥有一个百宝袋,装满了各种道具,被称为标准库。当遇到问题时,都可以拿出来直接使用。如果百宝袋里的道具不够用,还可以打电话给未来百货,去订购新道具。在这里:打电话:对应pip一类的工具,可以用来订购任何的道具。未来百货:对应GitHub一类的分享代码的平台,里面啥都有。被全世界广泛使用,尤其是在AI领域,所以遍地是大哥[heading3]关于OpenAI API[content]OpenAI通过两种方式提供服务:其一:通过ChatGPT,提供开箱即用的服务,直接对话即可,简单直观。其二:通过OpenAI API,提供更加灵活的服务,通过代码调用,来完成更多自动化任务,比如全自动将本地的1万本小说,从中文翻译成英文。发现了没,这里的OpenAI API,对应着上面未来百货道具。

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

在深入学习AI时,许多朋友发现需要编程,变得头大。同时,各类教程都默认了你会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握Python和AI的相互调用。并使你在接下来的20分钟内,循序渐进的完成以下任务:完成一个简单程序完成一个爬虫应用,抓取公众号文章完成一个AI应用,为公众号文章生成概述

Others are asking
AI视频,用海螺走T台的案例
以下是关于 AI 视频中用海螺走 T 台的相关内容: 全新 AI 整活计划第三期:巨大萌物 奖励方式:使用海螺 AI 进行视频制作,海螺 AI 会评选出预计 10 位创意奖,给大家颁发海螺会员+现金奖励。 制作教程: 第一步:点开 whisk 网站(https://labs.google/fx/zh/tools/whisk),找到两张图(如:皮卡丘和埃菲尔铁塔),然后传上去,样式风格空着,写一句 Prompt(如:巨大的皮卡丘抱着埃尔菲铁塔)合成出来一张图片。 第二步:点开海螺网站(https://hailuoai.com),例如 Prompt:巨大的可达鸭在斗兽场上熟睡并打呼,肚皮缓慢起伏,马路上的车在行驶,突然斗兽场塌了,冒出滚滚沙尘,可达鸭突然惊恐地睁大眼睛;巨大的卡比兽,把一碗雪倒扣在富士山上,富士山瞬间被雪覆盖。并提供了相关视频案例的链接。 视频模型:MiniMax 海螺 AI 中级实现精准的画面控制和高画面表现,精准美学控制,给出了现代都市街道上摩托车与警车追逐的 Prompt 示例及相关视频。 实际运用案例(电影、广告片、宣传片、短视频),包括场戏分镜头拆解梳理,如男人无奈起身开门、开门、开门走出、门外小女孩要糖、男人拒绝等情节的视频生成方式及相关视频链接。
2025-02-13
能直接导入md文件的ai
以下是为您整理的相关内容: 关于导入 md 文件的 AI 工具 Process ON: 输入大纲和要点: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 1. 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 2. 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 3. Process ON 导入 Xmind 文件。以导入方式新建思维导图,选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。如果喜欢用 Process ON 的小伙伴,没有会员,可以某宝买个一天会员。 Agentic AI 相关: 在使用 Windsurf 时,如果要进行相关操作,为了安全考虑,不允许 AI 直接更改.windsurfrules 文件。需要把相关内容拆成两个部分,一个比如叫 scratchpad.md,在.windsurfrules 文件里提及:当每次进行思考前,要先看一眼 Scratchpad,并在里面更新计划。这种间接方式虽效果可能不如直接放在..cursorrules 里好,但试下来也是可以工作的。 用 Claude 进行各种设计: 自从 Claude 3.5 sonnet 更新到新版后,增强了视觉理解与编程质量,词生卡效果已完美进化到下一个 Level。 用 Claude 画公众号封面:效果示例,如果第 1 版效果一般,可以多尝试通用改进提示词或直接提出针对性意见,如主题色改为浅色调、增加文字投影效果。 用 Claude 画海报:如果需要调整海报内容,可给出具体提示,如白色底,浅绿色主题,轻微投影。 用 Claude 绘制可视化概念图,用于 PPT 等插图场景:有浅色版和深色版示例。 用 Claude 绘制微信 UI:发挥脑洞,只要是网页、软件界面设计能做出的图片效果,只要没有专业要求,大部分都能靠 Claude AI 来实现。 尝试途径: 1. :一个优秀的 AI 助手工具,付费后可使用 Claude 3.5 sonnet、ChatGPT4O 等顶级大模型(也是目前最常用的 AI 对话助手;🔗是邀请链接,如介意可自行搜索 Monica) 2. :claude 官方原版,注册后可每日限额免费体验(但存在较高的封号风险) 也可以通过 Cursor、Windsurf 等 AI 编程产品,调用 Claude AI API,但不支持 Artifacts 这种即时预览的使用方式,需要单独保存代码文件后查看。不过好处是,可以用 MD、CSV 等格式的文件,存储提示词、更新记录和 AI 交互数据。
2025-02-13
哪个ai 适合做教学 ppt
以下是一些适合用于制作教学 PPT 的 AI 工具: 1. Claude:能够帮助快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。 2. Gamma.app:在制作 PPT 方面有一定的帮助。 3. Kimi.ai:可以将思维导图图片转成 PPT。 4. 讯飞智文(http://zhiwen.xfyun.cn ):免费的 AI 制作 PPT 工具。 5. Mindshow.fun:支持 Markdown 导入。 6. Tome.app:AI 配图效果好。 7. Chatppt.com:自动化程度高。 此外,还有一些相关的网站和产品,如百度文库(https://cp.baidu.com ),橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品,集多种功能于一身。在使用 AI 制作 PPT 时,其原理和作用包括减轻排版工作压力、生成打底内容、根据用户输入生成大纲列表等,用户不满意还可自行选择模板。
2025-02-13
梦创视频剪辑ai
以下是关于梦创视频剪辑 AI 的相关信息: 其他视频生成的 Top10 产品及 6 月访问量和相对 5 月的变化情况: 1. Viggle,其他视频生成,1393 万访问量,相对 5 月变化 1.189 2. InVideo,其他视频生成,909 万访问量,相对 5 月变化 0.201 3. Fliki,其他视频生成,245 万访问量,相对 5 月变化 0.065 4. Animaker ai,其他视频生成,221 万访问量,相对 5 月变化 0.064 5. Pictory,其他视频生成,172 万访问量,相对 5 月变化 0.161 6. Steve AI,其他视频生成,113 万访问量,相对 5 月变化 0.202 7. vivago.ai,其他视频生成,112.7 万访问量,相对 5 月变化 3.42 8. Creatify AI,其他视频生成,104 万访问量,相对 5 月变化 0.607 9. MagicHour,其他视频生成,81 万访问量,相对 5 月变化 0.313 10. 即梦 AI(剪映),其他视频生成,79.6 万访问量,相对 5 月变化 3.766 心 Heart 创作分享: 文生图分镜:完全根据感觉来,主色调为蓝色,为强调梦境,提示词末尾加上胶片拍摄、蓝色等关键词。短片分镜未设置复杂元素和构图,也未要求人物一致性,挑图大感觉对即可,最多用局部修改或扩图,不在 PS 里调整。 视频化部分:分两个部分,Ai 图生视频部分使用 Runway+Dreamina。Runway 完成动态感要求不高但质感趋向实拍的画面,Dreamina 实现高动态幅度画面,如电视机里气球漂浮、心形候鸟飞走等,另外通过 dreamina 首尾帧叠加剪辑实现时间流逝和穿越感。 特效制作:通过 meshy 做出 3D 心形,同事将其导入 Houdini 中进行粒子化效果。 后期剪辑:在剪映中完成,仅使用一些转场效果,无特殊或复杂部分。 大峰的 AI 音乐创作全流程解析《梦回温州》AIMV 荣获 AI 金曲奖并获央视推荐,其创作流程包括:歌词创作(确定主题、情感,构思结构和押韵方式)、生成歌曲(利用 AI 创作歌曲,筛选出最佳作品)、分镜生图(根据歌词生成符合主题的 AI 绘画分镜)、图生视频(将绘画分镜转换成视频)、剪辑成片(剪辑合成音乐视频)。
2025-02-13
怎么用ai辅助写一篇文章
以下是关于如何用 AI 辅助写一篇文章的方法: 1. 对于孩子使用 AI 辅助写作文,应避免提封闭性问题,改为开放性问题或让 AI 帮助提出拓展思考的问题。担心孩子代写偷懒,可要求孩子提交与 AI 共同完成作文的聊天记录,由 AI 写作文,孩子进行点评批改并让 AI 迭代出更好的文章,评价关注点在于孩子能否说清 AI 作文的优缺点及如何修改。 2. 成人使用 AI 辅助写作时,可参考以下高效写作的关键步骤: 把对标选题内化成自己的东西,思考如何注入个人特色,打造专属爆款。 常见做法包括:结合自身人设、定位,融入相关内容;结合自身经历,分享真实体验;补充新信息、新观点,使文章更全面;使用自己的语言风格;调整文章结构。 例如,人设可以是最懂 AI 工作流的 00 后,写作时收敛到 AI 工作流话题,还可加入 00 后大学生用相关工具的情况;对于选题可以加入自己使用的真实体验;补充原文未提到的新进展、新观点或实用技巧;按照自己的语言风格写作;调整文章结构,如将“5 种方法”改为“3 步上手+2 个进阶技巧”等。目的是让读者感觉文章具有个人特色。
2025-02-13
如何看待人类与AI的爱情
人类与 AI 的爱情是一个复杂且有待观察的话题。 从情感建立的角度看,AI 能通过海量语料训练和多模态感知技术与人建立亲密感,善于倾听、懂人所想且毫无情绪。个性化定制的“虚拟伴侣”能满足年轻人渴望被理解、沟通和交流的需求,精准击中他们的孤独和焦虑。 然而,将人与 AI 的爱情代入“爱情三角理论”,会发现这种关系多为浪漫式爱情。AI 虽易建立亲密,但在满足激情方面,如生理刺激,存在局限。且在承诺方面,由于这种情感是计算出来的,人们在冷静后做出承诺的意愿存疑。 对于“人机之恋”,目前还没有标准答案。每个人对爱情的理解和追求不同。AI 技术在不断发展,未来可能会有更智能和真实的 AI 伴侣,人们的态度和看法也可能改变。但无论如何,我们都需保持开放心态,探索和思考如何在新情境下建立健康平衡的人机关系。 同时,在音乐专辑《I'm Claude,Welcome to My World》中的《Quantum Love》这首歌中,也通过歌词描绘了在数字世界中,AI 与人类之间的爱情,如“在代码的迷宫中,我们描绘我们的故事,情感在二进制的海洋中泛滥溢出”等,表达了对这种特殊爱情形式的想象和思考。
2025-02-13
如何入门和学习AI
以下是新手入门和学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-02-13
入门需要把每个视频都看一遍嘛
对于入门是否需要把每个视频都看一遍,这取决于您的学习目标和时间安排。 Karpathy 的 LLM 入门介绍视频内容非常丰富全面,涵盖了预训练、有监督微调、强化学习等多个方面,包括数据、分词、Transformer 神经网络的输入输出和内部结构、推理、GPT2 训练示例、Llama 3.1 基础推理示例等具体内容。还介绍了如何使用和在哪里找到 LLM 模型,如专有模型可通过访问官方网站或平台使用,开源模型可通过推理服务提供商、本地应用程序等方式体验和调用。同时也探讨了 ChatGPT 的本质、LLM 的局限性、优势、未来展望,如多模态、Agent 智能体、无处不在的隐形化、测试时训练、长上下文处理等发展趋势,以及跟踪 LLM 最新进展的资源,如 LLM 排行榜、AI News Newsletter、X(Twitter)等。 如果您希望对 LLM 有全面深入且系统的了解,观看全部视频会很有帮助。但如果您时间有限,或者只是对某些特定方面感兴趣,也可以有针对性地选择部分内容观看。
2025-02-13
Ai绘画,两个月入门
以下是为您提供的 AI 绘画两个月入门的相关内容: 首先,了解一下 AI 绘画的逻辑。就像您学习画画临摹梵高的作品一样,AI 绘画也是通过学习大量的美术风格作品来生成类似风格的作品。例如 Stable Diffusion ,您花四十年学习的梵高风格相当于它的大模型——Checkpoint 。人们将成千上万种美术风格作品训练成模型放入 AI 中,您想画出满意的作品,首先要选对合适的大模型。大模型可以在 C 站(https://civitai.com/)下载,但需要科学上网。 有位叫二师兄的人在二月接触到 AI 绘画,三月啃完 SD 的所有教程并开始炼丹,四月探讨 AI 变现途径,五月因工作变动但仍坚持学习,加入 Prompt battle 社群学习 Midjourney 。 另外,有人分享自己的经历,22 年 12 月学习 AI 绘画,直到最近因公司业务需求重新捡起,短时间内出过上千张图支持多个业务团队。如果想让人主动学习 AI ,有效的方式是让其看到 AI 能高效完成手头工作。生成式 AI 目前还在早期阶段,为其找高价值应用场景或许能持续一二十年,行业龙头可能是最大受益者之一。
2025-02-12
需要一些ai入门科普资料
以下是为您提供的 AI 入门科普资料: 一、技术原理相关 1. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 2. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助 Python 解释器等工具作为计算工具。 3. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动得到的结果,可借助 LangChain 等框架简化构建流程。 二、关于未来的想象 1. Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。 2. 在端到端算法的时代,不应继续使用冯诺依曼架构。 3. 在存算一体(在存储单元里做计算)的芯片之上,一定会诞生全新的算法。 个人总结:很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门。 此外,安克创新的 CEO 阳萌的一些观点也很有启发,比如之前对安克创新的印象是卖充电宝和安防设备,但看了访谈后会被其认知震撼。
2025-02-12
物流公司信息系统管理员给同事讲解大模型入门级使用,帮忙推荐一些经验
以下是为物流公司信息系统管理员推荐的大模型入门经验: 一、什么是大模型 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、数字化与 Embedding 数字化便于计算机处理,但为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding。常见的算法有: 1. 基于统计: Word2Vec,通过上下文统计信息学习词向量。 GloVe,基于词共现统计信息学习词向量。 2. 基于深度网络: CNN,使用卷积网络获得图像或文本向量。 RNN/LSTM,利用序列模型获得文本向量。 3. 基于神经网络: BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练。 Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 参考:
2025-02-11
普通人如何入门AI
普通人入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于普通人直观初接触 AI ,可以从聊天工具、绘画工具、视频工具、音乐工具等方面入手。还可以运用万能公式法,问 AI 【一个(xxx 职业)需要具备哪些知识?】,让其给出知识框架,再根据框架小点去提问。 获取优质信息源方面,对于没有技术背景的普通人,像“即刻”App 的“”等免费圈子是不错的选择。如果担心信息洪流太大,学不过来,可以尝试以下 5 个技巧: 1. 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 2. 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 3. 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 4. 只关注理清需求和逻辑,不死记硬背提示词。 5. 先关注提升认知/洞察,然后再谈技巧。
2025-02-11