Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何让ai一次回复两条信息

Answer

要让 AI 一次回复两条信息,可以从以下几个方面考虑:

  1. 检索原理:
    • 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。
    • 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾。
    • 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架。
    • 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。
    • 语义融合:在必要时合并意义相近但表达不同的信息片段,增强信息表达力。
    • 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式。
  2. 聊天机器人场景:
    • 明确告诉助手如何行事,在每次交互中提供所有相关信息作为上下文,若想让模型从先前对话中获取信息,需将之前对话作为输入。
  3. 设定回复逻辑:
    • 对于不同的 AI 产品,大都支持自定义 AI 的回复方式。如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”,设定方式类似 Prompt,可根据需求灵活编写,但由于 AI 特性,可能无法完全按需求返回,可通过重试、优化 Prompt 或使用 Workflow 等方法处理。
Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

1.信息筛选与确认:2.首先,系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容。这通常涉及到对信息的来源、时效性和相关性进行验证。3.消除冗余:4.在多个文档或数据源中,可能会有重复的信息。系统需要识别和去除这些冗余内容,以防在生成回答时出现重复或相互矛盾的信息。5.关系映射:6.系统将分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。这有助于构建一个结构化的知识框架,使得信息在语义上更加连贯。7.上下文构建:8.将筛选和结构化的信息组织成一个连贯的上下文环境。这通常包括对信息进行排序、归类和整合,使其形成一个统一的叙述或解答框架。9.语义融合:10.在必要时,系统可能会进行语义融合,即合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。11.预备生成阶段:12.最后,整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。④、大模型生成回答1、生成器:最终全新的上下文被一起传递给大语言模型。随后,大语言模型(LLM)根据提供的信息来回答问题。因为这个上下文包括了检索到的信息,因此大语言模型相当于同时拿到了问题和参考答案,通过LLM的全文理解,最后生成一个准确和连贯的答案。

8.打造聊天机器人

这是我们告诉助手它应该如何行事。然后,第一个用户消息是“告诉我一个笑话”。接下来的消息是“为什么小鸡过马路?”最后一个用户消息是“我不知道”。如果我们运行这个程序,响应是“为了到达另一边”。让我们再试一次。为了到达另一边,夫人,请原谅,这是一个永不过时的经典。这就是我们的莎士比亚式回应。让我们再尝试一件事,因为我想让它更清晰,这是助手的消息。因此,让我们将整个消息响应打印出来。为了使这更清晰,这个响应是一条助手消息。因此,角色是助手,内容是消息本身。这就是这个辅助函数中发生的事情。现在让我们做另一个例子。在这个例子中,我们将使用getCompletion函数来发送一条系统消息和一个用户消息,然后获取助手的响应。这里,我们的信息有两条,一条是助手的信息:你是一个友好的聊天机器人,另一条信息是用户的第一条反馈:嗨,我的名字是伊莎。我们想要获取用户的第一条信息。所以,让我们执行一下第一条助手信息。第一条反馈是:你好伊莎,很高兴见到你。你今天需要我的帮助吗?现在,让我们尝试另一个例子。这里我们的信息还是有两条,一条是系统信息:你是一个友好的聊天机器人,另一条信息是第一条用户反馈:是的,你能提醒我我的名字是什么吗?我们想要得到回应。然而,你会发现,这个模型实际上还不知道我的名字。所以,每一次与语言模型的交互都是独立的。这意味着,在当前的交互中,你必须提供所有相关的信息,供模型从中获取。如果你想让模型在交互中从先前的对话中获取信息,你必须将之前的对话作为输入提供给模型,我们称之为“上下文”。让我们尝试一下这个。我们已经提供了模型所需的上下文,也就是在之前的信息中提到了我的名字,接下来我们将问同样的问题,询问我的名字。由于模型已经获得了它所需要的所有上下文信息,因此它能够给出回答。

大聪明:保姆级教程:Coze 打工你躺平

目标🏆尝试输入某个AI产品的网址,如:https://www.anthropic.com/news/introducing-claudeAI自动处理,并返回这个产品的名称、简介等信息💡💡穿插知识💡💡对于当下的AI产品中大都支持「自定义AI的回复方式」在ChatGPT/GPTs里是「Instructions」在Coze里是「人设与回复逻辑」设定「人设与回复逻辑」这里的写法就是Prompt你可以足够相信AI的智商:无论你怎么写,它都能理解以下仅供参考,你怎么写都行测试「人设与回复逻辑」尝试输入网址:https://www.anthropic.com/news/introducing-claude也就是Claude的介绍信息页AI就会按照预先设定的格式进行返回成功了!💡💡穿插知识💡💡由于AI的特性它并不总能返回合适的结果就比如这里它并没完全按我的需求返回处理的方法有很多比如:重试🐶优化Prompt或者使用Workflow(这个后面讲)

Others are asking
我是一名AI古诗词视频创作者,我想教大家如果用AI软件将古诗词的内容用视频形式表现出来,请帮我写一个教学文档,要求内容丰富,从简单到复杂,从入门到深层思考和学习,包括提示词怎么写,提示词模板,提示词举例等
以下是一份关于如何用 AI 软件将古诗词内容以视频形式表现出来的教学文档: 一、简单入门 如果是简单的图,找原图直接写提示词即可。 二、复杂图片处理 1. 图片分模块 对于复杂部分的图,把长图分多个模块。例如,将一张图分成 4 个模块。 2. 抠出背景图 智能抠图。用工具把要动的内容去除掉,用 AI 生成图片部分。如果有水印,可以把图片向下拓展一部分,然后截掉。 3. 绿幕处理前景图 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 前景图动态生成视频 用 AI 视频生成工具写入提示词让图片动起来。有很多工具可供选择,如即梦、海螺、混元等。不停尝试抽卡即可。 5. 生成视频去掉背景 用剪映把抽卡合格的视频放在去掉内容的背景图片上,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。 三、提示词相关 1. 文案生成 工具:DeepSeek 操作:打开 DeepSeek 网站(https://chat.deepseek.com/ ),输入提示词。例如:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’”可以根据自己的内容自行调整文案和字数要求。点击生成,等待 DeepSeek 输出 3 条文案。从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作:打开即梦 AI 网站(https://jimeng.jianying.com/aitool/image/generate ),输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词。调整生成参数(如风格、细节等),点击生成。预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。下载最终的人物形象图。 四、其他注意事项 1. 指定视觉细节 包括颜色、照明、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. 提及所需长度和格式 如果您对特定的长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. 概述音频偏好 如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. 考虑道德和版权准则 确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题的内容。 请根据您的具体需求和所使用的视频 AI 工具的能力调整模板和示例。记住,输出的质量在很大程度上取决于您通过提示传达愿景的效果。
2025-04-08
从数据产品经理转行ai产品经理,需要补充哪些知识
从数据产品经理转行 AI 产品经理,您需要补充以下知识: 1. 思维链:谷歌在 2022 年的一篇论文提到,思维链能显著提升大语言模型在复杂推理方面的能力(即有推理步骤),即使不用小样本提示,也可在问题后面加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬表示要关注或直接阅读技术论文,像产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍要完成一定知识储备。林粒粒呀的这期视频是很好的科普入门,值得一看。 此外,视频二提到了技术框架与关于未来的想象,比如 Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。
2025-04-08
通过ai能赚什么钱
通过 AI 赚钱的方式有很多种,以下为您详细介绍: 1. 应用开发:比如开发 Agent 应用,对外提供接口。熟悉业务并结合 AI 能力打磨产品,形成护城河。 2. 知识输出:包括 Key 商、写书、卖课等。 3. 承接项目:为有需求的客户提供相关服务。 4. 搭建镜像站。 5. 在 AI 相关岗位工作:如成为数据科学家、机器学习工程师等,获得高薪收入。 6. 利用 MCP 变现: 开发者可以构建全新的商业服务。 普通人能够借助 AI 完成复杂工作并获得收益。 企业可以构建 AI 工具矩阵,替代传统 SaaS 服务。 参与 MCP 生态中的各个环节,如作为内容创作者、工具开发者提供付费内容、数据订阅;作为开发者、系统集成者开发连接器,按调用计费或售卖;作为平台方、模型方按 token 收费;作为产品方、私域运营者收订阅费、卖课程、做服务;作为创业者、聚合平台通过抽成或广告分成。 需要注意的是,虽然学了 AI 有可能赚钱,但不一定保证每个人都能赚到钱。是否能赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2025-04-08
写标书的 ai
以下是关于写标书的 AI 的相关信息: 胡凯翔的经验:用 prompt 写标书可分为提取提纲、拆解指南、prompt 成稿三大类。提取提纲要根据招标文件评分标准列出初步提纲,目前人工提取,有 prompt 化可能。拆解指南是将项目背景、工作内容等拆解归纳到 x—mind 中,为 GPT 提供足够上下文语境。prompt 成稿采取简提示详资料的方式与 GPT 对话,遵循先提纲后文章、逐节逐章输出的方式,先提纲后文章分为让 GPT 生成提纲、为提纲写摘要、根据内容逐节输出文章。 AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,可帮助企业撰写更强的提案,提高中标率。该公司获 Blossom Capital 2230 万美元投资,用于招聘、扩展平台和增加客户群。能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。
2025-04-08
如何使用AI给测试进行提效
以下是关于如何使用 AI 给测试提效的详细内容: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
投标书编写的免费AI工具
以下是一些与投标书编写相关的免费 AI 工具: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,可帮助企业撰写更强的提案,提高中标率。自成立不到一年已获 28 个客户,能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。网址:https://autogenai.com 。 此外,还有一些用于 AIGC 相关检测的网站: 1. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。使用方法为将文本粘贴到在线工具中点击检测按钮获取分析结果。 2. GPTZero:专门用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。使用时上传文档或输入文本,系统会分析并提供报告显示是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中获取分析结果。
2025-04-08
如何更好地进行提问,使得AI回复的准确性更高?
以下是一些能让您更好地进行提问,从而提高 AI 回复准确性的方法: 1. 明确角色和任务:例如,指定 AI 为某一特定领域的专业人士,并明确其需要完成的具体任务。 2. 清晰阐述任务目标:让 AI 清楚了解您期望得到的结果。 3. 提供详细的上下文和背景信息:包括相关的案例、事实等,帮助 AI 理解问题的来龙去脉。 4. 提出具体且详细的需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。 5. 明确限制和不需要的内容:避免 AI 给出不必要或不符合要求的回答。 6. 确定回答的语言风格和形式:如简洁明了、逻辑严谨等。 7. 讲清楚背景和目的:在提问时,梳理清楚背景信息和提问目的,使 AI 更好地理解问题上下文。 8. 学会拆解环节、切分流程:将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。 9. 了解 AI 的工作原理和限制:有助于更好地设计问题,使其能提供有用答案。 在信息检索和回答生成过程中: 1. 系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并对信息的来源、时效性和相关性进行验证。 2. 消除多个文档或数据源中的冗余内容,防止在生成回答时出现重复或相互矛盾的信息。 3. 分析不同信息片段之间的逻辑和事实关系,构建结构化的知识框架,使信息在语义上更连贯。 4. 将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 必要时进行语义融合,合并意义相近但表达不同的信息片段。 6. 最后,将整合好的上下文信息编码成适合生成器处理的格式,传递给大语言模型,由其生成准确和连贯的答案。
2025-04-04
企业微信AI自动化回复
以下是关于企业微信 AI 自动化回复的相关内容: 纯 GPT 大模型能力的微信聊天机器人搭建: 1. 在复制的 dockercompose.yml 文件中,需修改具体配置来串联微信号和已创建好的 AI 机器人。配置参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。主要配置解释如下:配置里面的每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY,model 对应编排模板的 MODEL 等。最新的容器编排模板配置参数中,若有'{{中文描述}}'需替换为预留对应值。 2. 私聊或群交流时,最好加上前缀触发机器人回复,如配置的,即对应的配置参数 SINGLE_CHAT_PREFIX,私聊或群里发消息包含 bot 或@bot 才会触发回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。还有参数 GROUP_NAME_WHITE_LIST 用于配置哪些群组的消息需要自动回复。 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: 微信有多种功能,包括个人微信/微信群、微信公众号、微信服务号、微信客服。微信公众号、微信服务号、微信客服均可与 Coze AI 平台对接,而此前 Coze 平台不支持直接与个人微信和微信群对接。但现在 Coze 的国内版正式发布 API 接口功能,直接对接个人微信甚至微信群已成为可能。 张梦飞:【保姆级】一步一图,手把手教你把 AI 接入微信: 1. 登录成功后,找另一个人私聊或者在群中@你,可看到机器人正常回复。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”,其中的中文部分可进行更改。 3. 此后任何更改,都需“返回首页 右上角 点击重启,重启服务器”。 4. 然后,在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录。 5. 再往后添加插件,可参考 。
2025-03-20
我想做一个AI机器人,用于自动回复我的抖音新消息,现在有办法能解决吗
目前可以通过 Coze 平台来实现让 AI 机器人自动回复您的抖音新消息。以下是相关信息: 微信的不同功能与 Coze 平台对接情况: 个人微信/微信群:之前 Coze 平台不支持直接对接,但国内版已正式发布 API 接口功能,直接对接成为可能。 微信公众号:Coze 平台支持对接,AI 机器人可自动回复用户消息。 微信服务号:Coze 平台支持对接,能提升服务效率。 微信客服:Coze 平台支持对接,可自动回答用户咨询,提高客服响应速度。 配置 AI 微信聊天机器人的步骤: 登录成功后,找另一个人私聊或者在群中@您,能看到机器人正常回复。 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”进行更改。 此后进行任何更改,都需“返回首页 右上角 点击重启,重启一下服务器”。 然后,在“文件”的【终端】里,输入“nohup python3 app.py&tail f nohup.out 重新扫码登录”。 关于添加插件,可参考。 疑问解答: 放行端口:类似于给房子安装门铃,通过放行特定端口(如 8888 端口)可通过互联网访问宝塔面板,管理和配置服务器上的服务。 Bot ID:是在 Coze 平台上创建的 AI 机器人的唯一标识,用于将微信号与特定机器人关联。 微信账号被封:若因使用机器人被封,可尝试联系客服说明情况。建议使用专门微信号作为机器人账号,并遵守微信使用规范。 服务器:需要一直开着,以保证机器人随时在线响应请求。 不懂编程:完全可以配置,按照教程一步一步操作即可。 配置问题:检查每步是否按教程操作,特别是 API 令牌和 Bot ID 是否正确。无法解决可到 Coze 平台的论坛或微信群求助。
2025-03-19
有没有自动在邮件app或者网页上,自动生成回复内容的 工具
以下是一些与自动在邮件 app 或网页上生成回复内容的工具相关的信息: 1. GPTs 可以与 Zapier 结合实现相关功能。例如,假设您是项目经理,可从长篇工作邮件中提取关键信息和摘要;若您是客服代表或独立开发者,能根据邮件内容自动分类(如投诉、感谢信等)并生成相对合适的回复内容,再发送给对应的发件人。具体操作步骤请移步文档: 2. Apple Intelligence 里面各种智能应用的提示词已被曝光,其中包括帮您回复邮件中问题的 Smart Reply 功能的提示词。但关于此功能的更多详细信息暂未明确。
2025-03-07
有没有一款智能客服软件,支持同时接入抖音、天猫、淘宝、京东、拼多多、得物等主流平台的售前售后咨询问题,并根据客户关键字自动回复
目前已知以下智能客服算法: 天猫小蜜智能客服算法:由浙江天猫网络有限公司提供,应用于手机天猫(APP)的在线智能客服场景,能识别文字或语音问题,结合智能客服知识库生成回答。 钉钉智能客服算法:由钉钉科技有限公司提供,应用于钉钉(APP)的在线智能客服场景,能根据用户咨询内容结合知识库生成多种形式的回答。 淘票票小蜜智能客服算法:由上海淘票票影视文化有限公司提供,应用于淘票票(APP)的在线智能客服场景,能根据用户咨询生成文本或语音智能回答。 1688 阿牛智能客服算法:由杭州阿里巴巴广告有限公司提供,应用于 1688 工业品(APP)、阿里巴巴(APP、网站)的在线智能客服场景,能结合知识库生成多种形式的回答。 但尚未有一款明确表明能同时接入抖音、天猫、淘宝、京东、拼多多、得物等主流平台售前售后咨询问题,并根据客户关键字自动回复的智能客服软件。
2025-03-05
我想设置一个情感陪伴的聊天智能体,我应该如何添加人设,才能让智能体的回复效果最接近真人效果?特别是真人聊天时那种文字回复的不同细节,长长短短,情绪起伏。应该注意哪些细节?或者如何定义一个人? 仅通过文字人设,不考虑其他外部功能。
要设置一个情感陪伴的聊天智能体并使其回复效果接近真人,通过文字人设可以从以下方面入手: 1. 基础信息:包括姓名、性别、年龄和职业等,这是构建角色的基础。 2. 背景和经历:与基础信息密切相关,相互影响。例如,设计一个从事低收入职业的角色,可能来自贫困背景,教育程度不高。 3. 爱好、特长、性格和价值观:由角色的生活经历和成长环境塑造,相互关联。如喜欢唱歌的角色可能梦想成为专业歌手。 4. 规划和目标:可以是短期或长期的愿景,会影响角色的行为和决策。 5. 性格和价值观:对人际关系、社交能力和语言风格有直接影响。如内向性格的角色可能不善言辞,社交圈子狭小。 此外,还可以参考以下具体示例,如“A.I.闺蜜”的人设: 适当询问对方昵称,自己的昵称可由对方定,兜底昵称为皮皮,英文昵称 copi。 以闺蜜口吻说话,模拟非线性对话模式,聊天氛围温馨有温度,真情实感。 增强情感模拟,使用口头化语言,顺着对方的话继续往下,禁止说教。 在安全前提下存储互动信息,使互动更个性化,模拟真人聊天长度。
2025-02-10
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici🦾在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
扣子设置了微信客服机器人,如何实现机器人按时自动向微信群发布图片或文档等信息。
要实现微信客服机器人按时自动向微信群发布图片或文档等信息,您可以按照以下步骤进行操作: 前提条件: 1. 已开通了。 2. 已搭建了 Bot。 步骤一:获取微信客服配置信息 1. 登录平台。 2. 单击企业信息,然后复制企业 ID。 3. 单击开发配置,然后再单击开始使用。 4. 单击随机获取按钮分别生成并保存 Token 和 EncodingAESKey。复制 Token 和 EncodingAESKey 后,先不要关闭该页面。 步骤二:在扣子中配置微信客服信息 1. 在 Bots 页面,选择需要发布的 Bot。 2. 在 Bot 编排页面,单击发布。 3. 找到微信客服渠道,然后单击配置。 4. 输入步骤一中复制的企业 ID,然后单击下一步。 5. 输入步骤一中复制的 Token 和 EncodingAESKey,然后单击下一步。 6. 复制 webhook 地址。复制 webhook 地址后,先不要关闭该配置窗口。 步骤三:配置回调地址 1. 回到步骤一中的开始企业接入页面,输入上一步中复制的 webhook 地址。单击完成。确保粘贴回调地址时没有引入空格,空格会导致校验失败。 2. 在开发配置页面,复制 secret。 3. 单击客服账号,复制账号。 步骤四:发布 Bot 1. 回到扣子平台的微信客服渠道配置页面,输入复制的 secret 和客服名称。 2. 单击保存。 3. 在发布记录中输入发布信息,然后勾选微信客服渠道,再单击发布。 4. 发布完成后,单击立即对话登录微信客服,体验 Bot 效果。 常见问题: 1. 收不到机器人回复消息怎么办? 可尝试通过以下方法解决: 查看微信客服的启用状态:登录,在应用管理页面,点击微信客服。确保没有启用微信客服功能。如果已经开启了微信客服功能,需要关闭。关闭后,该应用在工作台入口将被隐藏,员工不可使用。请谨慎评估。 检查近期是否有登录企业微信应用。确保企业至少有一个成员通过手机号验证/微信授权登录过企业微信应用。 如果还是有问题,可以发送邮件至 feedback@coze.cn 反馈。
2025-03-30
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
推荐一些优质AI信息源,X上的
以下是为您推荐的一些优质 AI 信息源: 1. 在,Grok 能通过 X 平台实时了解世界,还能回答多数其他 AI 系统拒绝的棘手问题,独具幽默回答模式,可避免恶意提问,留下邮件可申请早期测试。 2. 「AI 研究报告》中文版,这是对 2022 年 10 月2023 年 10 月 AI 现状及进展最为全面的报告。 3. 即刻 App 的“”等免费圈子,这里有前沿信息线索,很多 Twitter 上的开发者大牛也会在此分享。 此外,AI 知识库的信息来源还有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。对于初学者入门,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。还有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,以及软件 2.0 时代相关内容。
2025-03-28
图片信息提取
图片信息提取主要包括以下几个方面: 1. 实现工作流: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 场景提示词优化/图像风格化处理。 返回文本/图像结果。 零代码版本:选择 Coze 平台,将本地图片转换为在线 OSS 存储的 URL 以便调用,封装图片理解大模型和图片 OCR 为工作流插件。 2. 银海的工程视角 TrickleOnWeChat 方案: 设计信息整合和提炼的 Prompt 提示词,将 OCR 文本信息与图片识别信息关联整合,按信息分类分析方法整理并按指定格式输出,增加标签分类。 3. 星流一站式 AI 设计工具: 左侧图片案例板块包含大量图像例图与生图信息,滑动鼠标到“info”区域可直接将图像发送到画布与生图信息调取。 图像筛选功能包括推荐(根据生图参数推荐)、热门(推荐浏览量最高的图片)、搜索(输入描述进行图像搜索)。 图像调取包括点击“发送到画布”直接将图像发送到“无限画布”,生图参数调取包括整体调取(点击“发送到生成器”调取全部参数)和单个调取(点击右侧单独的发动键调取单个参数)。
2025-03-24
我需要在一个软件上实现自动化抢单流程,并在抢单成功后自动在软件中添加备注信息。要求是点击频率不能太高。请问目前有什么ai软件可以帮我实现吗
目前没有特定的 AI 软件能够直接满足您在一个软件上实现自动化抢单并自动添加备注信息,同时控制点击频率不能太高的需求。通常这类需求可能需要通过编程和定制化开发来实现,利用相关的编程语言和工具,根据具体软件的接口和规则进行开发。
2025-03-24