直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何学习生成式人工智能?

回答

以下是学习生成式人工智能的一些建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

此外,台湾大学李宏毅教授的生成式 AI 课程也是很好的学习资源。该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。通过学习本课程,您可以掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。课程的学习内容包括:

  1. 什么是生成式 AI:生成式 AI 的定义和分类、生成式 AI 与判别式 AI 的区别、生成式 AI 的应用领域。
  2. 生成式模型:生成式模型的基本结构和训练方法、生成式模型的评估指标、常见的生成式模型及其优缺点。
  3. 生成式对话:生成式对话的基本概念和应用场景、生成式对话系统的架构和关键技术、基于生成式模型的对话生成方法。
  4. 预训练语言模型:预训练语言模型的发展历程和关键技术、预训练语言模型的优缺点、预训练语言模型在生成式 AI 中的应用。
  5. 生成式 AI 的挑战与展望:生成式 AI 面临的挑战和解决方法、生成式 AI 的未来发展趋势和研究方向。

学习资源包括:

  1. 教材:《生成式 AI 导论 2024》,李宏毅。
  2. 参考书籍:《深度学习》,伊恩·古德费洛等。
  3. 在线课程:李宏毅的生成式 AI 课程。
  4. 开源项目:OpenAI GPT-3、字节跳动的云雀等。

学习方法可以根据个人情况进行选择和调整。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

学习笔记:《生成式AI导论2024》 李宏毅

一、课程介绍这是台湾大学李宏毅教授的生成式AI课程,主要介绍了生成式AI的基本概念、发展历程、技术架构和应用场景等内容。课程共分为12讲,每讲约2小时。二、学习目标通过学习本课程,掌握生成式AI的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式AI的发展现状和未来趋势。三、学习内容1.什么是生成式AI生成式AI的定义和分类生成式AI与判别式AI的区别生成式AI的应用领域2.生成式模型生成式模型的基本结构和训练方法生成式模型的评估指标常见的生成式模型及其优缺点3.生成式对话生成式对话的基本概念和应用场景生成式对话系统的架构和关键技术基于生成式模型的对话生成方法4.预训练语言模型预训练语言模型的发展历程和关键技术预训练语言模型的优缺点预训练语言模型在生成式AI中的应用5.生成式AI的挑战与展望生成式AI面临的挑战和解决方法生成式AI的未来发展趋势和研究方向四、学习资源1.教材:《生成式AI导论2024》,李宏毅2.参考书籍:《深度学习》,伊恩·古德费洛等3.在线课程:李宏毅的生成式AI课程4.开源项目:OpenAI GPT-3、字节跳动的云雀等五、学习方法

学习笔记:《生成式AI导论2024》 李宏毅

一、课程介绍这是台湾大学李宏毅教授的生成式AI课程,主要介绍了生成式AI的基本概念、发展历程、技术架构和应用场景等内容。课程共分为12讲,每讲约2小时。二、学习目标通过学习本课程,掌握生成式AI的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式AI的发展现状和未来趋势。三、学习内容1.什么是生成式AI生成式AI的定义和分类生成式AI与判别式AI的区别生成式AI的应用领域2.生成式模型生成式模型的基本结构和训练方法生成式模型的评估指标常见的生成式模型及其优缺点3.生成式对话生成式对话的基本概念和应用场景生成式对话系统的架构和关键技术基于生成式模型的对话生成方法4.预训练语言模型预训练语言模型的发展历程和关键技术预训练语言模型的优缺点预训练语言模型在生成式AI中的应用5.生成式AI的挑战与展望生成式AI面临的挑战和解决方法生成式AI的未来发展趋势和研究方向四、学习资源1.教材:《生成式AI导论2024》,李宏毅2.参考书籍:《深度学习》,伊恩·古德费洛等3.在线课程:李宏毅的生成式AI课程4.开源项目:OpenAI GPT-3、字节跳动的云雀等五、学习方法

其他人在问
生成式搜索和知识问答的区别
生成式搜索和知识问答存在以下区别: 生成式搜索: 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。 知识问答: 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。 一些知识问答系统能够支持在本地运行。 此外,为您推荐一些 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。 Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
什么是生成式人工智能?
生成式人工智能是一种能够生成新内容的人工智能技术。生成的内容可以是多模式的,包括文本、图像、音频和视频等。它能够在给出提示或请求时,帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。 生成式人工智能通过从大量现有内容(如文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Generative AI 可以应用于广泛的场景,如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 此外,Google Cloud 提供了多种工具,如 Vertex AI 这一端到端机器学习开发平台,帮助开发人员构建、部署和管理机器学习模型。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。
2024-11-08
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
生成式AI和AIGC是什么,有什么区别和联系?
生成式 AI(Generative AI)是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 AIGC(人工智能生成内容)指利用生成式 AI 创建的内容,如图像、视频、音频、文本和三维模型。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用。 生成式 AI 和 AIGC 的联系在于:AIGC 实际上是生成式 AI 的应用结果。 区别在于:生成式 AI 侧重于技术本身,强调生成新内容的能力;AIGC 侧重于生成的内容,是生成式 AI 所产生的具体成果。
2024-11-04
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
生成式AI商业落地白皮书
以下是关于生成式 AI 商业落地的相关信息: 2024 年 7 月 29 日,《》由火山引擎、RollingAI 和 InfoQ 研究中心联合发布,为 CXO 提供 AI 转型战术指南。该白皮书分析了生成式 AI 在各行业的应用现状和挑战,并提供了企业 AI 转型的趋势展望和最佳实践。书中通过 240 个应用场景地图,展示了 AI 在消费零售、金融、汽车等行业的落地案例,探讨了 AI 基础设施构建、项目落地准备和快速补齐能力差距等关键问题,并提出了八步实施大模型接入的方法论。 其它相关报告: 《》 《》 《》 《》 《》 2024 年 8 月 17 日,最近上传的一些报告: 爱分析发布的《》聚焦于 AI Agent 开发管理平台市场,特别评估了火山引擎的 HiAgent 平台。报告指出,AI Agent 作为大模型应用的主流形态,正重塑科技和商业领域。 《》白皮书由 Denodo Technologies 发布,强调了生成式人工智能(Gen AI)在商业和财务价值实现中的潜力。书中指出,Gen AI 应用的可靠性依赖于数据质量,而数据管理是实施 AI 的关键挑战。 《》 《》 此外,关于游戏中的生成式 AI 革命:生成式 AI 是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。AI 在游戏中并不是新鲜事,早期游戏中的虚拟敌人只是简单脚本程序,不能学习,能力取决于程序员。现在由于更快的微处理器和云技术,有了更多计算能力,可以构建大型神经网络,在高度复杂领域识别模式和表示。这篇博文分为两部分,第一部分包括对游戏领域生成式 AI 的观察和预测,第二部分是对该领域的市场地图,概述各个细分市场并确定每个市场的关键公司。
2024-10-23
人工智能技术在材料设计的应用
以下是人工智能技术在材料设计方面的应用: 1. 存在一些可辅助或自动生成 CAD 图的 AI 工具和插件,如 CADtools 12(Adobe Illustrator 插件)、Autodesk Fusion 360(集成 AI 功能的云端 3D CAD/CAM 软件)、nTopology(基于 AI 的设计软件)、ParaMatters CogniCAD(基于 AI 的 CAD 软件),一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等也提供了基于 AI 的生成设计工具。这些工具通常需要一定的 CAD 知识和技能才能有效使用,对于初学者建议先学习基本的 3D 建模技巧。 2. DeepMind 利用其深度学习工具 GNoME 发现了超过 220 万种新的晶体材料,其中约 38 万种被认为是稳定的。这展示了 AI 在新材料方面前所未有的预测规模和准确性,推动了材料发现革命,并且公开了发现的新材料数据供其他科学家研究和实验。 3. 在新工业革命中,AI 正在工业化生物制药和医疗保健,被应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。
2024-11-25
人工智能与教育相关的
以下是关于人工智能与教育相关的内容: 可以使用人工智能帮助教育,包括辅助自学、让教师生活更轻松及课程更有效。例如,可以要求人工智能解释概念,获取良好结果。同时要注意因人工智能可能产生幻觉,关键数据需依据其他来源仔细检查。相关提示如“一个很好的自动导师”,可通过“https://chat.openai.com/share/ec1018ec1d864160b587354253c7d5cb”找到直接链接激活 ChatGPT 中的导师。 有一些 AI+教育的案例和投稿,如“书籍推荐:三本神经科学书籍”“AI 赋能教师全场景”“未来教育的裂缝:如果教育跟不上 AI”“化学:使用大型语言模型进行自主化学研究”。 推荐阅读可汗学院创始人的新书《Brave New Words:How AI Will Revolutionize Education》(中文翻译为《勇敢的新词:人工智能如何彻底改变教育》),书中提到人工智能在教育领域的未来将与科技合作,让教育变得更好,并非为了抢走老师的风头,而是帮助老师抢风头。
2024-11-25
人工智能
以下是关于人工智能的全面介绍: AGI 的 5 个等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 人工智能简介和历史: 人工智能是研究如何使计算机表现出智能行为,例如做人类擅长的事情。最初由查尔斯·巴贝奇发明计算机,用于按明确程序运算。现代计算机虽更先进,但仍遵循相同受控计算理念。但有些任务如根据照片判断人的年龄,无法明确编程,因为不知大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能的应用场景: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:改善搜索结果和提供个性化体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题。 4. 制造业: 预测性维护:预测机器故障。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 5. 交通运输:(未具体说明应用场景)
2024-11-25
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
我是一个产品经理但没有编程基础,目标是可以做自己的AI产品,学习AI应该从哪里开始学起
作为没有编程基础的产品经理,学习 AI 可以从以下几个方面开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,了解 AI 提示词工程师的岗位技能要求也会对您有所帮助: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 9. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 10. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 11. 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,虽然您是产品经理,但如果要独立做完整的产品开发,不要寄希望于 0 基础没有额外输入光靠工具就能完成。在开发过程中,可能需要提前学习相关知识和技能。
2024-11-25
怎样学习AI
以下是关于学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 1. AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 中学生学习 AI 的特别建议 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-24
该怎么学习关于ai的内容
以下是关于学习 AI 内容的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 如果希望继续精进,还可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 4. 评估和调优: 性能评估:学会评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-24
学习AI从哪里开始?
对于新手学习 AI,建议您从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-24
有没有suno相关的学习资料
以下是关于 Suno 的学习资料: 音乐生成使用了 Suno,相关教程可参考 Keen 和陈浚嘉的这两篇: Suno 网址: 优点:回答问题更准确、上下文的衔接更好。 限制:需要🪜,需要邮箱注册。 时间:10 min。 价格:每日有免费额度 10 首歌。 Custom Mode:开启为自己有歌词,关闭则给你随机生成歌词,你只要填描述。 Lyrics:直接填歌词即可,可以用熟悉的、喜欢的歌曲原词先感受一下产品功能,会有对比性。 Instrumental:不要歌词、直接出纯音乐的曲子。 Style of Music:写 Prompt 的地方,1 句简短的自然语言描述即可,注意最多 100 字符。 此外,还有可供参考。在自定义模式(Custom Mode)下,有两个主要的输入窗口:音乐风格(Style of Music)与歌词(Lyrics)。音乐风格(Style of Music)需要填写一些 tag 来描述整首音乐的风格和感觉,多个 tag 之间用“,”进行分隔。根据 Suno 的官方文档和测试,可以识别的 tag 包括音乐类型/流派、人声/乐器、情绪/氛围、节奏、场景、混响、其他和声/音效等。
2024-11-24
学习AI
以下是针对新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-23