直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

照片修复

回答

以下是关于照片修复的相关知识:

  • 图像高清修复与无损放大的流程通常分为三部分:
    • 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,因其处理时间长。
    • 图像高清修复:使用 Iceclear/StableSR 等模型进行高清修复并 2 倍放大,搭配 Stable SR Upscaler 模型和合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)等。
    • 图像高清放大:用 realisticVision 底膜进行二次修复,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型二次放大。
  • 用 AI 给老照片上色:
    • 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时将图片放大。
    • 可在 PS 里调整角度和裁切照片,然后上色。对于复杂照片,可放弃人物服装颜色指定,只给场景方向,加入第二个 controlnet 控制颜色,如使用 t2ia_color 模型,关键词如蓝天、绿树、灰石砖。
    • 将照片放入后期处理,使用 GFPGAN 算法清晰人脸,五官重绘后,再将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型修复,vae 选择 vqgan,可不写提示词以免干扰原图。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

图像高清修复,无损放大 N 倍

整个图像修复放大的流程分为三部分:输入原始图像、修复图像、放大并重绘图像。下面将详细拆解每一部分的生成原理。[heading3]一、图像输入[content]第一部分添加Load Image节点加载图像,只需上传需要处理的图片即可。不建议上传大分辨率的图片,图片分辨率越大,处理的时间就越长。[heading3]二、图像高清修复[content]第二部分进行高清修复,把原本模糊的图片修复,并进行2倍放大。Checkpoint大模型使用Iceclear/StableSR,这是一种新颖的方法来利用封装在预先训练的文本到图像扩散模型中的先验知识来实现盲超分辨率(SR)。具体来说,就是通过时间感知编码器,在不改变预先训练的合成模型的情况下实现有希望的恢复结果,从而保留生成先验并最小化训练成本。并且需要搭配Stable SR Upscaler模型才能在最大程度上修复图像,推理图片每个噪点,以还原图像。提示词部分应包含我们想要达到的目的内容,在此场景中如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)(杰作),(最高品质),(逼真的),(非常清晰);3D,卡通,动漫,素描,(最差质量),(低质量)全程采取两次高清修复,这一次修复原始图像分辨率并且放大,已经很完美还原,但是分辨率并不够,继续进行下一步。[heading3]三、图像高清放大[content]这一步主要针对第一次放大修复后的图像,进行二次修复。这里用realisticVision底膜最合适,这个模型在重绘扩图放大等领域效果非常好。使用提示词反推node对图像进行画面提示词提取,搭配tile ControlNet提升画面细节感,然后需用合适的高清放大模型,对图像进行二次放大。

【SD】用AI给老照片上色,岁月不改它模样

启用MutiDiffusion插件,不开放大倍数,仅使用分块渲染的功能,能帮助我们在显存不够的情况下,将图片放大到足够的倍数。好了,经过一顿操作,我们就将这张图片处理完成了。对比一下看看,之前的黑白照片和经过上色高清化完成之后效果。同样的步骤,又还原了一张我妈妈的照片。在问到她当时穿的什么颜色衣服的时候,她记得可清楚了,想都没想就告诉我说是绿色的。这两张还算容易的,接下来就遇到比较棘手的照片了。比如这一张,是我外公外婆带着我妈和我舅舅。外公走得更早,我甚至都没见过一面,只有这些照片还记录着他存在的痕迹。而这张照片也有些年头了,一直被外婆好好保存着。人物多、场景复杂,像素非常的低,使得这张照片处理起来难度很大。我首先在ps里面进行了一下角度的调整和照片的裁切,然后使用刚才的步骤进行上色,但是直接上色的结果有点像是加了一层黄色滤镜,有颜色但是年代感还是太强了。而太具体的颜色指定,又容易让画面污染严重,因为内容实在太多了,光是指定衣服就得十来个颜色提示词,AI能分辨得清才怪。所以我决定放弃人物服装的颜色指定,只给一个场景方向,剩下的交给AI去自行决定。于是,我从网上找到了一张仙人洞的照片,让AI去帮我匹配色调。加入第二个controlnet来控制颜色,使用的是t2ia_color的模型。关键词只给了:蓝天、绿树、灰石砖这么简单的几个词。颜色终于正常了,最后经过脸部的修复和放大,得到了最终的效果。对比一下前后的效果,那个流逝的时光仿佛又回来了,外婆看到后也非常高兴,在微信上连连夸赞。

【SD】用AI给老照片上色,岁月不改它模样

将照片放入到后期处理中,使用GFPGAN算法将人脸变清晰,不知道这个功能的可以参考我这篇文章——[【Stable Diffusion】图片高清化+面部修复+一键抠图,一些你不知道的事儿](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487422&idx=1&sn=9cdf7ef37c2acb3c0fc3328d0ba8af74&chksm=c251597af526d06c921ea6728cb2a32bdf1d5f699e19d6ba13b849994e4d01af8a5144132aad&scene=21#wechat_redirect)。这个步骤,可以将我们的五官进行重绘,但是却没有办法将照片中的头发、衣服等其他元素变清晰。所以,接下来我将图片再发送到图生图当中,打开stableSR脚本,放大两倍。这个放大插件是所有插件中对原图还原最精准的,也是重绘效果最好的,不知道的朋友可以参考我的这篇文章——[【Stable Diffusion】超清无损放大器StableSR](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487403&idx=1&sn=cbb96534fa6f58c37cf9fc64bc7ade0c&chksm=c251596ff526d0792b4bba0e21b69427b23e780824bdc75b22f1073e8bad6f61f30199fc8344&scene=21#wechat_redirect)。切换到sd2.1的模型进行修复,vae选择vqgan,提示词可以什么都不写,以免对原图产生干扰。

其他人在问
老照片修复
以下是关于用 AI 给老照片上色的详细步骤和方法: 1. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 2. 在 PS 里进行角度调整和照片裁切。 3. 对于人物照片还原,选择 realisian 的写实大模型,提示词直接描述颜色和对应内容。ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 4. 将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰。 5. 把图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 6. 对于复杂的照片,如人物多、场景复杂、像素低的,可先放弃人物服装颜色指定,只给场景方向,让 AI 自行决定颜色。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 参考文章: 1. 2. 作者:白马少年,发布时间:20230910 19:00,原文网址:https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw
2024-11-06
能修复老照片吗
AI 可以修复老照片。以下是一些相关的方法和工具: 可以使用 Stable Diffusion(SD)中的 controlnet 模型中的 Recolor 新模型为黑白老照片重新上色。提示词可直接描述颜色和对应的内容,ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 将照片放入后期处理中,使用 GFPGAN 算法将人脸变清晰。 把图片发送到图生图中,打开 stableSR 脚本,放大两倍,切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 辅助工具方面: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可增加更多细节 开源工作流: 其他工具和网站: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN ,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/
2024-11-05
请问修复旧照片怎么处理?
修复旧照片可以按照以下步骤进行处理: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。stableSR 是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写,以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,可在显存不够的情况下将图片放大到足够倍数。 5. 对于复杂的照片,可先在 ps 里进行角度调整和照片裁切,然后按照上述步骤上色。若直接上色效果不佳,比如像加了黄色滤镜或年代感太强,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。比如从网上找相关照片让 AI 匹配色调,加入第二个 controlnet 控制颜色,使用 t2ia_color 的模型,给简单的关键词,如“蓝天、绿树、灰石砖”。 6. 修复时必须使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2024-10-31
请问修复旧的照片怎么处理?
修复旧照片可以按照以下步骤进行处理: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章——。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。stableSR 是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章——。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写,以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下,将图片放大到足够的倍数。 5. 对于复杂的照片,如人物多、场景复杂、像素低的照片,可以先在 ps 里面进行角度调整和照片裁切,然后按照上述步骤进行上色。如果直接上色效果不佳,比如像加了一层黄色滤镜或颜色指定导致画面污染严重,可以放弃人物服装的颜色指定,只给一个场景方向,让 AI 自行决定。比如从网上找一张匹配色调的照片,加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,关键词可以只给“蓝天、绿树、灰石砖”等简单的词。 6. 修复时必须要使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 7. StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 8. 一个 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。这三个文件可以在百度云盘的链接中获取。安装好之后,可以用一张从网上找的神仙姐姐的照片做测试。 需要注意的是,在修复过程中,不同的照片可能需要根据具体情况进行调整和尝试,以达到最佳的修复效果。
2024-10-31
老照片修复用哪个AI软件比较好
以下是一些可用于老照片修复的 AI 软件和工具: Stable Diffusion:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,可在显存不够时放大图片。还可使用 GFPGAN 算法将人脸变清晰,将图片发送到图生图中,打开 stableSR 脚本进行放大修复。 本地工具放大:https://www.upscayl.org/download 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强: magnific:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型(能恢复老照片):https://github.com/TencentARC/GFPGAN ,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/
2024-10-29
老照片修复
以下是关于用 AI 给老照片修复上色的详细步骤和方法: 1. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 2. 在 PS 里进行角度调整和照片裁切。 3. 将照片放入后期处理,使用 GFPGAN 算法让人脸变清晰。 4. 把图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 5. 对于人物照片还原,选择 realisian 的写实大模型,提示词直接描述颜色和对应内容。 6. ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 7. 对于复杂的照片,如人物多、场景复杂、像素低的,可先给场景方向,让 AI 自行决定颜色。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 作者为白马少年,发布时间为 20230910 19:00,原文网址为 https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw 。
2024-10-29
有可以更具提供的文本和照片生成视频的AI吗?
以下是一些可以根据提供的文本和照片生成视频的 AI 工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作并支持视频编辑。目前内测免费,其生成服务托管在 Discord 中。操作步骤包括加入 Pika Labs 的 Discord 频道,在“generate”子区输入指令生成或上传本地图片生成视频,对不满意的效果可再次生成优化。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-11
照片生成卡通画
以下是关于照片生成卡通画的相关内容: 1. 个性卡通头像生成: 复杂提示词:如“Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultra detail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderino iw 1.5 s 500 v 5”。 不同照片生成:可更换新照片使用上述提示词重新生成。 其他调整:若不喜欢 Disney 风格,可将提示词中的“Disney”换成“Pixar”;若为女孩,可将“boy”换成“girl”。每次生成 4 张图片,满意可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击 V1~V4 进行修改。 2. 【SD】简笔水彩风格插画生成: 大模型:“Flat2D Animerge”,适合生成卡通动漫图片,官方建议 CFG 值在 5 或 6(使用动态阈值修复可拉到 11)。 Lora:“Chinese painting style”可增加中国画水彩风格效果,权重设置为 0.4;“Crayon drawing”可添加简单线条和小孩子笔触,权重设置为 0.8。 操作步骤:将图片丢到标签器中反推关键词,发送到“文生图”;在正向提示词末尾添加上述 lora;设置好尺寸,重绘幅度开 0.5 让 AI 更自由发挥,想接近原图可降低数值;将图放入 controlnet 中,选择 tile 模型,权重为 0.5,控制模式选择“更注重提示词”。 3. 进阶使用技巧总结: 通用人物模版:想用真人照片生成卡通头像,可用「真人照片」+「照片描述」+「方法 1 的关键词」处理。若生成满意的图要记得保存,下次同种类型可直接喂图,效果更好。
2024-11-07
如何用两张照片,合成一张绘画效果的图
以下是将两张照片合成为一张绘画效果的图的步骤: 1. 利用 Dalle3 绘图,根据以下提示词分别把高中和大学时期的内容绘制成两幅四格漫画: 高中:中午,急急忙忙跑到食堂,排长队买饭。 大学:中午,懒洋洋在宿舍点外卖,直接送到宿舍楼下。 2. 利用 Python 进行图片处理: 统一设置:使用上传的字体,字体颜色黑色。 首先: 在每张图片的上面创建一个空白的白色背景区域(从原图片进行延长,而不是遮盖原图),用来放置文字(高中的图片写上“高中”,大学的图片写上“大学”)。 文字的字体大小设置成 65px,居中显示。 然后: 在图片下方创建一个空白的白色背景区域(从原图片进行延长,而不是遮盖原图),用来放置文字(高中的图片写上),如果句子过长,要注意换行显示。 文字的字体大小设置成 45px,居中显示。 最后把两张图片拼成一张图,高中的图片在左,大学的图片在右。两张图中间放置 50px 的空白区域。 另外,还有一些相关的知识供您参考: Double Exposure 是一种视觉艺术风格,将两个或多个照片合成到一起,创建出具有艺术效果的图像,灵感来自于传统的双重曝光摄影技术。最佳提示词:Double Exposure。 在 Stable Diffusion 中,可以使用【X/Y/Z plot】脚本来做参数对比,例如将 X 轴设置为提示词相关性,取值范围是 1 30。通过对比找到合适的参数,如提示词相关性在 6 11 中间为最佳。还可以使用绘图功能进行局部修改,如增加红色眼镜、去掉衣服上的图案、更换头部或帽子等部分。
2024-11-04