以下是一些常见的 AI 大模型:
此外,还有以下一些知名的 AI 大模型:
首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧
首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)
OpenAI今年为我们带来了两个最佳AI模型,并将它们打包成一个无与伦比的聊天机器人,很难被超越。不过,别只看到树木而忽略了森林。大模型在各个方面都取得了进步,为我们带来的AI能力是大多数人在一年前无法想象的。我们可以用一点文本生成整个网站、演示文稿和头像。我们可以创造出任何我们想象的图像。明年这个类别会有什么?更多的生成式AI?「大型行为模型」?生成式口语语言模型?AGI?GPT-4(免费可用)——与人类水平相当的LLM:GPT-4是OpenAI在深度学习规模扩大方面的最新里程碑。GPT-4是一个大型多模态模型(接受图像和文本输入,输出文本),在各种专业和学术基准测试中表现出与人类相当的水平。Midjourney v5(免费)——令人惊叹的逼真AI图像-以及五指手:Midjourney V5模型是最新、最先进的模型,具有极高的一致性,擅长以更高分辨率解释自然语言prompt,并支持像使用tile这样的重复图案等高级功能。DALL·E 3(免费可用)——轻松将想法转化为极其精准的图像:现代文本到图像系统往往会忽略单词或描述,迫使用户学习提示工程。DALL·E 3代表了我们生成完全符合文本的图像能力的一大飞跃。Mistral 7B(免费)——迄今为止最优秀的70亿参数模型,Apache 2.0:Mistral 7B是一个具有73亿参数的模型,它:•在所有基准测试上超越了Llama 2 13B•在许多基准测试上超越了Llama 1 34B•在代码任务上接近CodeLlama 7B的性能,同时在英语任务上表现良好