Coze 可以使用 Python 实现。在 Coze 中,搭建工作流框架时,左侧的“选择节点”模块中有支持编写简单 Python 脚本的“代码”节点,可对数据进行处理。例如,在“大圣:我用 Coze 搓了一个乞丐版的秘塔搜索”中,代码节点的逻辑是将输入的内容处理成两个字段,即 contexts 字段(所有 snippet+title+link 的平铺,用来丢给大模型进行处理)和 references 字段(所有的引用)。代码块对于非程序员来说运用有一定难度,但在 AI 时代,学习一些基础语法就足够,具体逻辑可让 AI 帮忙编写。
[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。
[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。
input:输入Code:编写的代码Output:输出这里代码的逻辑如下:将上述的内容处理成两个字段contexts字段:所有snippet+title+link的平铺,用来丢给大模型进行处理references字段:所有的引用代码块如下:[heading4]输出[heading4]总结[content]代码块对于非程序员来说运用有一些难度,但是如果你愿意折腾,其实在AI时代,学习一些基础的语法就足够了,因为具体的逻辑可以让AI来帮你写。这里的Python代码就是AI帮我写的(我是Java开发,不会Python)